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Abstract 

The problem of power allocation for distributed 

detection in a power constrained wireless sensor 

network is considered. The sensors are assumed to 

have independent observations and send their 

local decisions to a fusion center over multiple 

access channels. The Jensen-Shannon divergence 

between the distributions of the detection statistic 

under different hypotheses is used as a 

performance criterion. It is demonstrated that by 

applying the proposed measure power allocation is 

more efficient comparing to other criteria like 

mean square error or Jeffry divergence. 

 

Keywords: distance measures, distributed 

detection, power allocation, wireless sensor 

networks (WSNs). 

 

I. Introduction 

Wireless sensor network (WSN) has become one 

of the most influential technologies over the last 

decades [1]. In the distributed sensor network, 

observation data is collected from different 

sensors, possibly processed, and transmitted to a 

fusion center (FC), where the signals received 

from sensors are combined to produce a final 

estimate of the observed quantity. The sensors 

typically have limited energy resources and 

communication capabilities. Thus, they are 

required to compress the sensed data and transmit 

only a short summary. This scenario is called 

distributed detection [2], the problem of which 

has been addressed, especially the design of local 

decision and fusion rules, for a long time [3]-[4]. 

Most of the previous papers assumed perfect 

transmission i.e. no error occurs during the 

transmission. In reality due to power and 
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communication constraints, this assumption may 

fail. A few researchers studied these imperfect 

communications between sensors and the FC [5]. 

Furthermore, most prior works on estimation in 

distributed sensor networks have focused on the 

situation, where the parameter(s) of interest are 

time-invariant, and either deterministic or i.i.d. 

Gaussian. In [6], the authors studied the linear 

decentralized estimation of the source vector, 

where each sensor linearly encoded its 

observations and the fusion center also applied a 

linear mapping to estimate the unknown vector 

signal based on the received messages, with mean 

squared error (MSE) as the performance criterion. 

In [7], the best linear unbiased estimator (BLUE) 

was applied by the FC to generate estimates of 

the unknown signal. In [8], both the orthogonal 

and coherent multiple-access channels were 

considered and two kinds of optimization 

problems were formulated: MSE minimization 

under a global sum transmit power constraint, and 

sum power minimization problem under an MSE 

constraint. An asymptotic expression for the MSE 

outage probability was also derived assuming a 

large number of sensor nodes. In Ref. [2] it was 

shown when the sensors have independent and 

identically distributed (i.i.d.) Gaussian or 

exponential observations and each sensor 

transmits its data over a MAC with capacity R, 

having a set of identical binary sensors is 

asymptotically optimal, as the number of 

observations per sensor goes to infinity. In [9], 

the authors studied the decentralized detection 

and fusion of a Gaussian signal under the 

assumption of i.i.d. sensor observations and 

relay-amplifier scheme. Error exponents and 

resulting bounds were derived for Bayesian 

fusion performance. In [5], the optimal power 

allocation strategy was performed using the 

approximation of Jeffrey (J) divergence between 

distributions of detection statistics under different 

hypotheses as the performance measure. In [10], 

two statistical distance measures, including 

elemental J-divergence and elemental L2 

distance, with closed-form expressions were 

exploited as performance metrics. However, the 

noise statistic is considered independent with the 

diagonal covariance matrix. The channel matrix 

is assumed to be identity.  

In this paper, the Jensen-Shannon (JS) divergence 

between distributions of detection statistics is 

evaluated under different hypotheses as a 
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performance criterion. This divergence is globally 

defined, bounded, symmetric, and only vanishes 

when the two probability distributions are equal. 

Performing power optimization using the JS-

divergence, the transmission gain of sensors is 

obtained and demonstrated via tables and figures. 

The rest of the paper is organized as follows. In 

the next section, the structure of the distributed 

detection system is described. In Section III, the 

JS divergence optimization problem is developed. 

Simulation results are illustrated in Section IV. 

Finally, the conclusions are presented in section 

V. 

 

II. System Model 

A similar system model as that used in [5] is 

illustratetd in figure1. 
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Figure 1. Distributed Detection System Diagram 

 

 

A binary hypothesis testing problem is considered 

i.e. at any observation time, the detection of the 

monitored environment can be summarized as 

two hypotheses: 0H  and 1H for the absence and 

Presence of the target, respectively. Suppose K

wireless sensors with independent but not 

necessarily identically distributed observation

1 2[ , ,..., ]KX x x x , then based on local binary 

decision rules as below 

 

0

1

0   under 
( )

1   under 
k k k

H
u x

H
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
  

  

 

(1) 

 

sensors make decisions 1u [ ,..., ]Ku u ,and send 

them to FC. In this work, multi-access channels 

are considered for communication between the 

sensors and the FC. The false alarm probability 

and detection probability of sensor k are given by  

 

0( ) ( 1| )F kP k p u H 
 

(2) 

and 

1( ) ( 1| )D kP k p u H 
 

(3) 

 

Accordingly, the joint conditional density 

functions of the local decisions are 

(1 )

0
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and 
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(5) 

 

The received signals at FC are 

 
y= u+nHA  (6) 

 

where 1[ ,..., ]Ky yy  is the received signal, H is 

the channel matrix , which is assumed to be 

deterministic in this paper (We focus on the case 

in which the sensors and the FC have the minimal 

movement and the environment changes slowly).

 1diag ,..., Ka aA is the transmission gain 

matrix for each sensor, and  1n ,..., Kn n  is the 

additive Gaussian noise vector with zero mean 

and covariance matrix R . Thus, the conditional 

density function of the received signals at FC 

given the transmitted signals from sensors is 

multivariate Gaussian as follows 

 

1

1

2

1 1
( | ) exp ( HAu) ( HAu)

2
2

Tp y u y R y

R

 
    

 

 

 

(7

) 

 

The conditional probability density function of 

received signals given hypotheses is 

 

( | ) ( | ) ( | ),   0,1.i i

u

p y H p y u p u H i 

 

(8) 

 

The decision rule 0 0( )u y at FC determines the 

final decision. In this paper, the analysis is based 

on the power control strategy i.e. assigning a 

partial of the total power budget totP  to each 

sensor by choosing a transmission gain matrix A
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in the presence of total and individual power 

constraints. 

 

III. Power Allocation Based On JS Divergenece 

In this section, a detection performance criterion 

for power allocation problem is proposed. Error 

probability is the most commonly used measure 

of detection performance. However, only in 

certain special cases it provides the exact 

probability of error for the optimal detector. Even 

if the problem reaches the closed-form, usually 

numerical computations are required to provide 

insights into performance trends. Consequently, it 

does not lead to an efficient metric for the 

considered system. Another method commonly 

used in detection performance criterion is error 

bounds [11].  Distance related bounds are among 

the commonly used detection performance 

metrics [5]. The J-divergence, first proposed by 

Jeffrey [12], is a widely used measure for 

detection performance [11, 13, 14]. It 

symmetrizes the oriented Kullback-Leibler (KL) 

divergence as follows: 

 

1 0 0 1 1 0 0 1

1 0 0 1 1 0

( , ) ( , ) ( , ) ( , )

               ( , ) ( , ) ( ( ) ( ))      

J p p J p p KL p p KL p p

H p p H p p H p H p

  

   

 

(9) 

where 1 0( , )KL p p  is the KL divergence between 

1p and 0p  

1
1 0 1

0

( )
( , ) log

( )

p x
KL p p p dx

p x
 

 

(10) 

 

The J-divergence puts a lower bound on the 

detection error probability [11] via the following 

inequality 

 

1 2 exp( / 2)eP J  
 

(11) 

 

where 
1 2( , )   is the prior probability set, and

i  is the prior probability of the hypothesis 
iH

.One drawback of Jeffrey’s and KL divergence is 

that it may be unbounded, as the Pinsker 

inequality stated [15], and as a result numerically 

quite unstable to compute in practice. In this 

paper, the JS divergence is applied as the 

performance criterion. The JS-divergence was 

introduced in [16]: 

 

0 1 1 1 2 2 1 1 2 2( , ) ( ) ( ) ( )JS p p H p p H p H p      

 

(1

2) 

For the special case which 
1 2

1

2
   , we have 

1/2 1 0 1/2 0 1
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( , ) ( , )

1
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JS p p JS p p
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KL p KL p
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 

 (13) 

It symmetrizes the KL divergence by taking the 

average relative entropy of each distribution to 

the entropy of the average distribution 1 0

2

p p
. 

JS-divergence is bounded [16] and its square root 

which obeys the triangular inequality serves as a 

metric [17]. By the inequality of the arithmetic 

and geometric means, we have 

 

1 0
1 0

2

p p
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


 

(14) 

thus 
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(15) 

consequently 

1/2 1 0 1 0

1
( , ) ( , )

4
JS p p J p p

 

(16) 

 

Therewith, the JS-divergence is a lower bound on 

J-divergence. It has been shown that the JS-

divergence provides both the lower and upper 

bounds for the Bayes probability of error [16]. 
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(17) 

 

where H is the Shannon entropy function and 

0 1 0 0 1 1( , ) log logH         for which 
0 1

1

2
  

(17)results in the following inequality 

 

   
2

1/2 0 1 0 1 1/2 0 1

1 1
1 ( , ) ( , ) 1 ( , )

4 2
eJS p p p p p JS p p   

 

(18) 

No Similar upper bound on ep   in terms of the J-

divergence appears to be generally true. Thus, 

this measure is particularly useful in the study of 

decision problems. 

In this work, to optimize the detection 

performance at FC, the JS-divergence computed 

for the two densities of the received signals is 

maximized with respect to the underlying 

hypotheses. Thus, solving the following 

optimization problem results in the optimal power 

allocation: 
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(18) 

where 
totP is the total transmitter power budget 

distributed among sensors, and 
maxP is the 

component-wise square root of individual power 

constraints. The JS divergence 

 1/2 1 0( | ), ( | )JS JS p y H p y H is given by 
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(20) 

 

The density functions  ( | ),  0,1ip y H i  are given 

by (8). These conditional density functions 

( | )ip y H  are Gaussian mixtures. Generally, most 

well known divergences including KL divergence 

do not yield an analytic closed-form expression 

for a mixture of Gaussians. Similarly, the JS-

divergence between two Gaussian mixture 

densities does not have a general closed-form 

expression, so some approximations are needed 

to present the objective function in the closed-

form.  Different techniques have been used in 

literature to work around this problem [18]. Some 

approaches estimate the divergences. In this 

paper, a commonly used approximation that 

replaces the Gaussian mixtures densities

( | )ip y H  with Gaussian densities

( | ) ( ; , )g i i ip y H y   is applied. In this 

technique, f and g are considered Gaussian 

mixture models, and  marginal densities of 
dx R under f and g are

α α( ) (x;μ ,Σ )f x 


  

and ( ) ( ; , )b b b

b

g x x   , where  is the 

prior probability of each state, and ( ; , )x     

is a Gaussian in x with mean   and variance 

 .Replacing  f and g with  Gaussians ˆf and 

ĝ whose moments matches, the mean and 

covariance of f are given by 

 

ˆf  


  
 

(19) 

ˆ ˆ ˆ( ( )( ) )T

f f f   
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(20) 

 

From (7) and (8), it is clear that ( | )ip Hu  is the 

prior probability of each state, and ( | )p y u  is a 

Gaussian in y with mean HAu and covariance 

matrix R . Therefore, using the mentioned 

technique, the mean and covariance of Gaussian 

densities are given by  
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Applying (4) and (5), we have 
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(28) 

 

Unfortunately, the JS divergence has no closed-

form for Gaussians because 1 0

1
( , )

2

g g

g

p p
KL p

  and 

1 0

0
( , )

2

g g

g

p p
KL p


 do not have closed form 

expressions for Gaussians. It is due to that 

1 0

2

g gp p
 is the mixture distribution of two 

Gaussians. Again, by applying the mentioned 

technique the 1 0

2m

g g

g

p p
p


  part is approximated 

by Gaussians whose mean and covariance are 

given by 

 

1 2

2m

 



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(29) 

and  

0 1 0 1 0 1

1 1
( )( )

2 2

T

m    
 

       
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(30) 

 

Next, the JS-divergence between Gaussian 

densities is derived 
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Applying the (29) and (30), we have 
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(32) 

where 
1 0    . 

Therefore, a power allocation strategy can be 

designed by solving the following optimization 

problem 
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max ( , )

.   Tr[ ]

       0
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T
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JS p p

s t P
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
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where the optimization is over amplitude matrix

A defined earlier. 

 

IV. Simulation 

This section presents simulation results obtained 

from the considered power allocation strategy. In 

simulations, all the sensors and the FC perform 

Neyman-Pearson detection with false alarm 

probabilities set to 0.04FP  . Both the multiple 

access and orthogonal channel are considered in 

different scenarios. The maximum transmitting 

power of each sensor is 
max 2P   mW (3 dBm). 

The total power budget is below or equal to 2K 

mW. The detection probabilities vary according 

to the quality of the received local signal. The 

interior point optimization algorithm is used to 

solve the proposed power allocation for all cases. 

To illustrate channel power gains for each sensor 

k kg PL  , the path loss of signal power 

(measured in decibels) is modeled as follows: 

 

0 10 010 log ( / )k kPL PL n d d 
 

(33) 

 

where n is path loss exponent set to 2 for free 

space propagation, 
0PL is a constant set to 55dB , 

and 
0d is also a constant set to 1m in simulations. 

A. Two Sensors Orthogonal Channels 

Two sensors located at
1 2d   m and 

2 5d  m away 

from FC are considered to monitor an event and 

independently make their local decisions, then 

transmit their local decisions to FC through 

orthogonal channels. Based on mentioned 

assumptions, the channel gains are -61 and -69 

dB, respectively. The noise covariance matrix at 

FC is 2

kR I where the noise variance is 2 70  

dBm. In this scenario, the total power budget 

varies from -14 to 6 dBm. Four cases with 

various local detection quality combinations will 

be considered. 

 

Case A1: (1) 0.9,  (2) 0.7D DP P   

Case A2: (1) 0.9,  (2) 0.9D DP P   

Case A3: (1) 0.1,  (2) 0.9D DP P   

Case A4: (1) 0.7,  (2) 0.9D DP P   

 

For comparison, an equal power allocation is also 

considered. The optimal power allocation as well 

as the equal power allocation for cases A1-A4 are 

shown in 0For case A1, when the total power 

budget is very low, all the power goes to sensor 

1which has a better channel and also better 

detection quality. Growing the power budget, 

when the sensor 1 reaches maximum output level, 

sensor 2 starts to get positive power allocation. 

For case A2, sensor 1 has a better communication 

channel and the same local detection quality as 

sensor 2, so like the previous case power 

allocates to sensor 1 until it reaches maximum 

output level, after that sensor 2 gets positive 

power. For case A3, although sensor 1 is closer to 

FC and has a better channel, the detection quality 

of sensor 2 is much better, therefore in low power 

budget no power is distributed to sensor 1until 

sensor 2 reaches the maximum output power. For 

case A4, the sensor 2 does not have a noticeable 

better detection quality, while the better 

communication channel of sensor 1 

predominates. The proposed allocation distributes 

all the power to sensor 1until sensor 1 reaches the 

maximum output power and then sensor 2 starts 

to get power allocation. The water-filling effect of 
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the proposed power allocation is obvious in this 

scenario. The equal power allocation does not 

change between the four cases because it is not 

influenced by the local detection quality. 

Figures 3-6 show the detection probability at FC 

as a function of the total power budget for the 

cases A1-A4. It can be seen that for the same 

detection probability the proposed power 

allocation can save 3 dB in total power compared 

to equal power allocation. 

 

 
Figure 2. Equal power allocation and the proposed power 

allocation for the cases A1-A4. 
 

 
Figure 3. FC detection probability as a function of total 

power budget for caseA1. 

 

 
Figure 4. FC detection probability as a function of total 

power budget for caseA2. 
 

 
Figure 5. FC detection probability as a function of total 

power budget for caseA3. 
 

 

 

 

 
Figure 6. FC detection probability as a function of total 

power budget for caseA4. 
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B. Ten sensors with orthogonal channels 

In this part, we consider ten sensors scattered 

around an FC, and the total power budget varies 

from -7 dBm to 13 dBm (when each sensor 

transmits at full power 2 mW). Four cases are 

examined with numerous detection qualities 

located at various distances. 

 

Case B1: 2 0.6( 1),  ( ) 0.1 0.09( 1)i Dd i P i i       

Case B2: 2 0.6( 1),  ( ) 0.4 0.06( 1)i Dd i P i i       

CaseB3: 2 0.6( 1),  ( ) 0.8i Dd i P i     

Case B4: 

2 0.6( 1),  ( ) 0.94 0.06( 1)i Dd i P i i       

 

Tables I- IV show the percentage of the total 

power allocated to each sensor for cases B1-B4. 

  

 
Table 1. Percentage of The Tptal Power Allocated To Each 

Sensor for Case Bl 

Ptot 

(dBm

) 
1 2 3 4 5 6 7 8 9 10 

-7 m 0 0 0 0 0 0 0 0 0 
10

0 

-2 0 0 0 0 0 0 0 0 
2

5 
75 

3 0 0 0 0 0 0 0 
1

5 

3

1 
54 

8 0 0 0 0 0 
7.

5 

13.

5 

2

0 

2

8 
31 

13 
1

0 

1

0 

1

0 

1

0 

1

0 
10 10 

1

0 

1

0 
10 

 
Table2. Percentage of The Total Power Allocated to Each 

Sensor for Case B2 

Ptot 

(dBm) 
1 2 3 4 5 6 7 8 9 10 

-7 100 0 0 0 0 0 0 0 0 0 

-2 75 25 0 0 0 0 0 0 0 0 

3 41 31 19 9 0 0 0 0 0 0 

8 19 17 15 12 10 9 7 5 4 2 

13 10 10 10 10 10 10 10 10 10 10 

 

 
Table3. Percentage of The Total Power Allocated to Each 

Sensor for Case B3 

Ptot 

(dBm) 
1 2 3 4 5 6 7 8 9 10 

-7 100 0 0 0 0 0 0 0 0 0 

-2 67 33 0 0 0 0 0 0 0 0 

3 42 34 22 2 0 0 0 0 0 0 

8 24 24 21 17 11 3 0 0 0 0 

13 10 10 10 10 10 10 10 10 10 10 

 

Table 4. Percentage of the Total Power Allocated 

to Each Sensor for Case B3 

Ptot 

(dBm) 
1 2 3 4 5 6 7 8 9 10 

-7 100 0 0 0 0 0 0 0 0 0 

-2 79 21 0 0 0 0 0 0 0 0 

3 53 35 12 2 0 0 0 0 0 0 

8 31 30 23 14 2 0 0 0 0 0 

13 10 10 10 10 10 10 10 10 10 10 

 

In Case B1, sensors farther from FC have better 

detection qualities. It can be seen that at low total 

power budget power initially goes to farther 

sensors. As the power budget grows, power starts 

to be allocated to closer sensors and be 

distributed more evenly among the sensors. When 

the total power budget reaches the maximum (13 

dBm), each sensor transmits at max 3P  dBm. For 

case B2, even though sensors farther from FC 

have better detection qualities, this advantage 

cannot outperform the better communication 

channel of closer sensors to FC. Table II shows 

for low total power budget closer sensors to FC 

gain more power. When these sensors reach 

maximum output power, farther sensors get 

positive power allocation in sequential fashion. 

For case B3, all sensors have the same detection 

quality, but the sensors closer to FC have the 

advantage of better channel gain, so it is not 

surprising that the closer sensors to FC get 

positive power at first. In case B4, closer sensors 

have better detection quality and also better 

communication channel. This case is a more 

extreme version of case B3 in term of detection 

probability. In low power budget, no power is 

distributed to farther sensors. Power starts to be 

distributed to farther sensors in high power 

budget. 

 

C. Two sensors with multi-access channels 

The description and quality of the sensors of this 

part is similar to the section IV-A, but the data 

transmission is over a multi-access channel. The 

channel matrix is given by 

 

1

2

0 1
H

0 1

g

g





   
    

    
 

where 1g  and 2g are the channel gains and the 

same as the section IV-A. 0.1  is the 

interference coefficient. Furthermore, we 



MODARES JOURNAL OF ELECTRICAL ENGINEERING,VOL12, NO.3, SUMMER 2013 
 

18 

consider four cases with the local detection 

combinations exactly the same as section IV-A. 

 

 
Figure 7. Equal power allocation and the proposed 

power allocation for the cases C1-C4. 

 

Fig. 7 shows the proposed power allocation as 

well as the equal power allocation. It is noticed 

that the optimal power allocation is different from 

that of orthogonal channels. The water-filling 

effect in this section is not as obvious as in 

section IV-A. The interference of the multi-access 

channel affects the quality of communication 

channels. It makes the contribution of each sensor 

at FC depend not only on itself but also on other 

sensors.  

 

V. Conclusion 

A power allocation scheme for distributed 

detection systems over non ideal communication 

channels was introduced. The proposed power 

allocation strategy was analyzed with the JS 

divergence as the detection performance criterion, 

which reached the closed form expression. The 

optimal power allocation by maximizing the 

proposed criteria depends on channel quality and 

local detection probability. This criterion 

outperforms previously used divergences in term 

of boundedness, the feature that is a valuable property 

when numerical applications are considered. 

Furthermore, as demonstrated the JS-divergence is an 

efficient tool to study decision problems. 
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