
MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 14, NO 3, AUTUMN 2014

31

Population-based Automatic Fuzzy Neural

Network for Online, Knowledge-based

Learning

Mohammad Reza Keyvanpour1, Hajar

Homayouni2, Samaneh Zolfaghari3

Receive :2016/04/20 Accepted: 2016/07/26

Abstract

In this paper, a novel fuzzy connectionist

system for incremental online learning and

knowledge discovery called Population-based

Automatic Fuzzy Neural Network (PAFuNN)

is demonstrated in detail. PAFuNNs evolve out

of incremental learning. New connections and

neurons are created based on a population of

samples while operating the system which has

the advantage of controlling the number of

neurons involved and leads to the low

complexity of the network. Learning

Automata is implemented in order to optimize

the network parameters including sensitivity

and error thresholds to enhance the

performance of the entire system. Afterward,

the proposed method is compared with

Evolving Fuzzy Neural Network (EFuNN) as a

general online learning machine on two case

study datasets consisting of gas furnace and

iris data for prediction and classification tasks

leading to the thorough analysis of the effects

of selecting appropriate automata. Less

complex, more accurate and robust results are

obtained for the proposed method in

comparison with the EFuNN.

Keywords: Evolving connectionist systems;

Population-based Automatic fuzzy neural

networks; On-line learning; Knowledge-based

neural networks.

I. Introduction

Sophisticated methods and devices are required

for building intelligent Information Systems (IS)

which are capable of learning various types of

1 Associate Professor at Computer Engineering Department,

Alzahra University, Vanak Village Street, Tehran, Iran E-mail:

Keyvanpour@alzahra.ac.ir
2PhD Candidate at Computer Engineering Department, University

of Isfahan, Iran, E-mail: homayouni.hajar@eng.ui.ac.ir
3Msc Student at Computer Engineering Department, Alzahra

University, Tehran, Iran, E-mail: s.zolfaghari.ir@ieee.org

knowledge through their incremental interaction

with the environment [1]. The major requirements

of the IS are: (1) learning rapidly from a large

database, (2) adapting incrementally in an online

way, (3) having an open structure, (4) having a

long term memory, (5) interacting with the

environment continually, (6) dealing with

knowledge, and (7) representing space and time

adequately. There have been miscellaneous fuzzy

connectionist systems which have endeavored to

address the above-mentioned seven issues.

Nowadays, we can see an increased use of neural

networks for pattern recognition, classification

and optimization tasks [2]. Knowledge Based

Neural Networks (KBNNs) [3] are pre-structured

neural networks allowing learning from data, rule

insertion, rule extraction, adaptation and

reasoning which is a combination of fuzzy logic

systems [4] and neural networks [5]. Fuzzy

Neural Network (FUNN) [6] is a particular set of

KBNNs in which structure can be interpreted as a

set of fuzzy rules. EFuNNs [1] have the

advantages of traditional KBNNs; nonetheless,

they learn in a one-pass online mode, evolve

utilizing local element tuning while their structure

fluctuates as the system operates. Although

EFuNNs are suitable for learning on-line

incoming data rapidly, they are of high

complexity in as much as there is no control over

the number of the nodes added through the

operation of the system. Creating the nodes in

EFuNN which is expected to be optimized is

based on the currently presented data resulting in

a huge number of Rule Nodes. Some aggregating

[7] and [8] as well as pruning [3] approaches are

proposed for the reduction of the increasing

number of nodes (Rule Nodes). Evolutionary

methods [9] are also proposed for the

optimization of EFuNN parameters. These

methods are mostly slow in terms of the running

time. On the other hand, in basic EFuNNs,

thresholds are considered to be fixed and there is

no efficient strategy for optimizing them, apart

from a self-tuning approach in which thresholds

are tuned locally based on novel samples [10].

The PAFuNN model presented here principally

differs from all the fuzzy neural network models

introduced so far despite the existing structural

similarities. PAFuNNs have a five- layer structure

similar to that of EFuNNs. Furthermore, it is

appropriate for on-line knowledge discovery of

mailto:Keyvanpour@alzahra.ac.ir
mailto:homayouni.hajar@eng.ui.ac.ir
mailto:s.zolfaghari.ir@ieee.org

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 14, NO 3, AUTUMN 2014

32

large databases. In this method, neurons and

connections are created based on a set of refuted

samples unlike the EFuNNs in which each neuron

is produced only on the basis of a single

presented sample, which has the advantage of

controlling the number of neurons so that they

would not get too large. In other words, in

EFuNNs, there is no control over the number of

neurons added to the network throughout network

learning leading to a complex-structured network.

In a complex neural network, there is a high

probability of over-fitting the network on input

samples which is considered to be a problem that

is more vital for noisy datasets in which the

network learns noisy data absolutely efficiently

which leads to high output error in testing the

dataset. In the proposed method, after some

samples are presented to the network and a

definite number of Rule Nodes are created, if a

sample does not match any of the existing Rule

Nodes in the network, it will be stored and

regularly, some Rule Nodes are produced

according to a set of such samples.

The word ''automatic'' in the title of the proposed

system is concerned with implementing learning

automata so as to get adapted to the system

parameters. Two fixed structured learning

automata (FSLA) [11] are interconnected to the

network in order to get adjusted to the sensitivity

and error thresholds of the network to enhance

the entire performance of the system and escape

from the local minima. In raw EFuNN, the

parameters are set to fixed values.

A comparative analysis between PAFuNN and

EFuNN on two benchmarks proves the fact that

PAFuNNs are comparable with EFuNNs in terms

of the accuracy and robustness of the obtained

results; nevertheless, they are faster, more

controllable, and less complex.

The rest of this paper is organized as follows:

In Section II, the PAFuNN is demonstrated and in

Section III, the experimental consequences of

applying the proposed algorithm on two case

studies are analyzed. In the end, Section IV and V

are associated with feedbacks.

II. Proposed Method

PAFuNNs have a five-layer structure similar to

that of EFuNNs [1, 3, 7], and are appropriate for

on-line knowledge discovery of mega-databases.

The PAFuNNs have the advantages of the

EFuNNs. Nonetheless, they possess two

important distinctions so as to overcome their

current challenges:

1- Creating neurons based on a set of refuted

samples

2- Utilizing Fixed Structure Learning Automata

in order to get adapted to the network

parameters

They are both described in detail in the

following.

1) Creating neurons based on a population

of rejected examples

In order to control the entire number of the

created nodes, the PAFuNN creates neurons on

the basis of a set of refuted samples. To illustrate

this, after some data samples are presented to the

network and a definite number of Rule nodes are

created, if a coming data does not match any of

the existing Rule Nodes in the network, which

means that the two aforementioned conditions in

the EFuNN [3] are not satisfied for that input, it is

stored and the next sample will be presented to

the system. Otherwise, the network parameters

are adjusted through hybrid

supervised/unsupervised learning similar to the

aforementioned EFuNN approach.

 Regularly, at the end of some chunks of data

presented to the network, Rule Nodes are created

based on the set of the refuted stored samples

utilizing the following algorithm instead of

producing Rule Nodes for each single sample.

The last two parameters C(r) and Age(r) are

appropriate for network pruning algorithms [1].

As the Algorithm 1 illustrates, the fuzzified

stored samples are sorted first on basis of their

fuzzy distance calculated via Eq. (1).

KEYVANPOUR ET AL POPULATION-BASED AUTOMATIC FUZZY NEURAL NETWORK FOR ONLINE…

33

Algorithm 1. Neurons creation based on a population of rejected examples

S=Set of fuzzified stored examples; // S={Ef | Ef= (Xf,Yf)}

Sort S elements according to their fuzzy distances;

MD= maximum fuzzy distance between S elements;

Number of categories: MD * sensitivity threshold;

For i=1: Number of categories

For its subset Sˈ={Efˈ| Efˈ =(Xfˈ, Yfˈ)} of S

 Create a new rule node r;

 //Set its parameters:

 W1(r) = Mean of subset Xfˈ;

 W2(r) = Mean of subset Yfˈ;

 C(r)= Size (Sˈ) //number of samples pertain to r;

 Age(r) = 0;

𝐹𝐷(𝐸𝑓1,𝐸𝑓2)=
‖𝑋𝑓1−𝑋𝑓2‖

‖𝑋𝑓1+𝑋𝑓2‖
 (1)

These sets of samples should then be categorized

into some subsets based on the sensitivity

threshold inasmuch as this threshold is the radius

of the input hyper sphere of a Rule Node and

indicates the samples associated with the Rule

Node. For each category, a Rule Node is created

and its parameters are set as demonstrated in the

algorithm.

2) Utilization of fixed structure learning

automata for adaptation of network

parameters

In this part fixed structure learning automata [12,

13, 14, 15] are utilized in order to adjust the

PAFuNNs parameters to their best values and

improve the network performance. Through

interconnecting learning automata to the

PAFuNN, parameters SThr (sensitivity threshold)

and EThr (error threshold) are adjusted based on

the output of the network for each data sample.

The error threshold parameter EThr sets the error

tolerance of the system and also defines the

radius of the output cluster for each Rule Node.

The sensitivity threshold parameter defines the

minimum activation of the rule node r to a novel

input vector x from a new sample (x, y) in order

for the sample to be considered in its association

with this Rule Node Two fixed structure learning

automata are assigned to the rule layer and fuzzy

output layer of PAFuNN so as to determine the

sensitivity and error thresholds of those layers.

Note that the PAFuNN is the environment for

learning automata. The actions of the automata

correspond to the values of the SThr and EThr

parameters. The input (which is the response of

the environment) of the first automaton is some

function of the activation value of the selected

Rule Node and that of the second automaton is a

function of the fuzzy output error. The response

of the environment to the first automaton is

favorable if the activation value of the selected

Rule Node (The Rule Node with the highest

activation or in other words with the lowest FD

value) is higher than the sensitivity threshold, and

that of the environment to the second automaton

is favorable if the fuzzy output error is lower than

the error threshold value. Figure 1 shows the

EFuNN and PAFuNN flow charts respectively.

The red boxes are representing the differences

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 14, NO 3, AUTUMN 2014

34

(a) (b)

Fig. 1 The EFuNN (a) and PAFuNN Flow Chart (b)

III. Experimental results and analysis

In this section, the proposed method is

analyzed utilizing two standard datasets

called Furnace and Iris for classification

and prediction tasks.

1) Dataset

In order to conduct evaluation, two

standard datasets which are explained as

follows are utilized. Furnace dataset is one

of the most prominent datasets which has

been utilized by a majority of researchers in

neuro-fuzzy engineering field [16, 17, 18,

19, 20]. The dataset consists of 292

consecutive values of methane during a

time zone (t-4), and the carbon dioxide

(CO2) produced in a furnace throughout a

specific period (t-1) as input variables

comprising the produced CO2 in a period of

time (t) as an output variable.

Iris dataset is a prominent classification

dataset [21, 22] which consists of 150

instances; 3 classes -setosa, versicolour and

virginica and four attributes - X1-sepal

length, X2-sepal width, X3-petal length, and

X4-petal width.

2) Evaluation Technique

The evaluation technique is the method

proposed in [1] in which the network is

trained on the basis of each data pair of

input-output vectors as they become

accessible in an on-line mode. Then, the

network is tested on the spot to anticipate

KEYVANPOUR ET AL POPULATION-BASED AUTOMATIC FUZZY NEURAL NETWORK FOR ONLINE…

35

the following data items before the latter is

accommodated (learned) in the system. The

network is trained according to the first half

of the data (on-line, one-pass training) in

this way. Then, the evolved network is

tested in an off-line mode throughout the

second half of the data.

3) Evaluation criteria

To assess the feedbacks obtained through

applying the proposed network to the two

aforementioned tasks, various criteria are

demonstrated in the following.

¶ Root Mean Square Error (RMSE) is

a standard and prominent criterion for

evaluating neural networks [23, 24]. The

root mean square error is calculated at each

data point Di from the input data stream as

shown in Eq. 2.

𝑅𝑀𝑆𝐸(𝑖)

=𝑠𝑞𝑟𝑡(
𝑠𝑢𝑚{𝐸𝑟𝑟𝑡}𝑡=1,2,…,𝑖

𝑖
) (2)

Where Errt= (dt –ot)2 , dt is the desired

output value and ot is the EFuNN output

value produced for the tth input vector Dt.

¶ CPU Time is a criterion for

measuring neural networks efficiency [25,

26] and consists of time spent on the

training and testing phases of the network.

The equation of CpuTime computing is

presented in Eq. 3.

𝑐𝑝𝑢𝑇𝑖𝑚𝑒=

𝑐𝑝𝑢𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒+𝑐𝑝𝑢𝑇𝑒𝑠𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒; 𝑤ℎ𝑒𝑟𝑒: (3)

𝑐𝑝𝑢𝑇𝑟𝑎𝑖𝑛𝑖𝑔𝑇𝑖𝑚𝑒

=𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑜𝑛 𝑐𝑝𝑢 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒

𝑐𝑝𝑢𝑇𝑒𝑠𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒

=𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑜𝑛 𝑐𝑝𝑢 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒

¶ The Number of Rule Nodes is one of the

best ways to indicate the complexity of the

Fuzzy Neural Networks [1]. The Eq. 4

shown relation between complexity and

Rule Nodes.

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

≈#𝑅𝑢𝑙𝑒 𝑁𝑜𝑑𝑒𝑠 (4)

¶ Robustness is a proposed criterion which

calculates the robustness of the network

when confronting with a changing

architecture. To achieve such a purpose, 20

per cent of the connection weights of the

trained network are modified to prove how

long it takes to get restored and what the

features of the network will be then.

Therefore, the robustness of the network is

represented via parameters including CPU

time, RMSE and the number of rules as

represented in Eq.5.

𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠

=
1

𝑐𝑝𝑢𝑇𝑖𝑚𝑒+𝑅𝑀𝑆𝐸+#𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒𝑠
 (5)

4) Comparison with other networks

As the proposed method has taken its major

concept from evolving fuzzy neural

networks, the EFuNN and its progresses are

utilized to be compared with the proposed

method PAFuNN to accomplish the

expected evaluation.

¶ Evolving Fuzzy Neural Network

(EFuNN) proposed through [27] is

appropriate for on-line knowledge

discovery of mega-databases and was

demonstrated in Section II.

¶ Self-tuning EFuNN (sEFuNN) proposed

by [1] is one of the first improvements

applied to EFuNNs. In this method, the

aggregation and pruning of the Rule Nodes

are applied to control the number of the

Rule Nodes. Furthermore, the sensitivity

threshold is updated utilizing Eq. 6.

𝑆𝑗(𝑡+1)=𝑆𝑗(𝑡)+𝐹𝐷(𝑊1,𝑗(𝑡+1),𝑊1,𝑗(𝑡)) (6)

KEYVANPOUR ET AL POPULATION-BASED AUTOMATIC FUZZY NEURAL NETWORK FOR ONLINE…

36

¶ Recurrent EFuNN (rEFuNN) is

proposed in [28, 29] and has a recurrent

structure. The recurrent structure in a

rEFuNN emerges from regionally feeding

the firing strength of a fuzzy rule back to

itself. Due to the fact that this method is

appropriate for extracting fuzzy rules in an

on-line mode, it can be a proper method

which can be compared with our proposed

network.

5) Results

The PAFuNN comprises two significant

distinctions with basic EFuNN as stated in

the previous section. In this section, these

two alterations are analyzed separately for

better digestion and finally both changes

are applied to generate the proposed

PAFuNN. To illustrate this, the first

improvement (Adding Connectionist based

on a set of refuted samples) applied to

EFuNN is called pEFuNN and the second

(Utilizing the Fixed Structure Learning

Automata to adapted the network

parameters) is called aEFuNN. The results

are analyzed through two experiments

which are basically called time series

prediction and classification.

a) The First Experiment: Time Series

Prediction

In this section, the capability of PAFuNN

in time series anticipation task is analyzed

on the basis of furnace dataset. Table 1

demonstrates RMSE for training and

testing phases, the number of the Rule

Nodes, CPU Time for training/testing

phase, and network robustness for EFuNN,

sEFuNN, rEFuNN, pEFuNN, aEFuNN and

PAFuNN. For better digestion, the same

results are illustrated in Figure 2. Table 2

indicates the effect of various learning

automata on different evaluating criteria.

The same results are presented in Figure 3.

Note that the resulted values are average

over 10 distinct runs. Figure 4 demonstrates

the process of the networks evolving out of

the Gas furnace dataset. The real versus

anticipated by the network values is

presented when it is trained according to

the first half of the gas-furnace data (on-

line, one-pass training). The evolved

network is then tested in an off-line mode

throughout the second half of the data.

Table 1. Comparing EFuNN, sEFuNN, rEFuNN, pEFuNN, aEFuNN and PAFuNN on Gas furnace data set

Algorithm

RMSE

Train

RMSE

Test

#Rule Nodes

CPU Time

(Train-Test)

Robustness

EFuNN 0.09 0.106 27 1.5-0.3 1/(3.2+0.079+27)=0.033

sEFuNN 0.054 0.101 19 1.9-0.4 1/(3.1+0.064+7)=0.098

rEFuNN 0.038 0.085 26 2-0.2 1/(4.1+0.05+26)=0.033

pEFuNN 0.102 0.100 13 0.9-0.3 1/(2.8+0.06+12)=0.067

aEFuNN

(Krylov for SThr

Krinsky for EThr)

0.09 0.07 13 1.3-0.2 1/(2+0.077+16)=0.055

PAFuNN 0.099 0.066 10 1.5-0.2 1/(5+0.058+5)=0.099

Fig. 2 Comparing EFuNN, sEFuNN, rEFuNN, pEFuNN, aEFuNN and PAFuNN on Gas furnace data set

0

0.02

0.04

0.06

0.08

0.1

0.12

E
F

u
N

N

sE
F

u
N

N

rE
F

u
N

N

p
E

F
u
N

N

a
E

F
u
N

N

P
A

F
u

N
N

Robustness

0

0.5

1

1.5

2

2.5

E
F

u
N

N

sE
F

u
N

N

rE
F

u
N

N

p
E

F
u
N

N

a
E

F
u
N

N

P
A

F
u
N

N

CPU Time

0

5

10

15

20

25

30

E
F

u
N

N
sE

F
u
N

N
rE

F
u
N

N
p
E

F
u
N

N
a

E
F

u
N

N
P

A
F

u
N

N

#Rule Nodes

0

0.02

0.04

0.06

0.08

0.1

0.12

E
F

u
N

N

sE
F

u
N

N

rE
F

u
N

N

p
E

F
u
N

N

a
E

F
u
N

N

P
A

F
u

N
N

RMSE Test

0

0.02

0.04

0.06

0.08

0.1

0.12

E
F

u
N

N

sE
F

u
N

N

rE
F

u
N

N

p
E

F
u

N
N

a
E

F
u

N
N

P
A

F
u

N
N

RMSE Train

KEYVANPOUR ET AL POPULATION-BASED AUTOMATIC FUZZY NEURAL NETWORK FOR ONLINE…

37

According to the results, rEFuNN consists of

small RMSE during test time phase; nevertheless,

the number of the Rule Nodes for this network

which indicates the network complexity is

remarkable. Consequently, the CPU Time level is

high for it. rEFuNN robustness has the lowest

level among other approaches which signifies the

fact that a modification in the network

architecture would not result in an early

appropriate repair. Although sEFuNN has a high

level of robustness reaching approximately

maximum, it comprises the highest CPU duration.

On the other hand, the distinction between RMSE

regarding the training period and testing time is

too much which represents network over-fitting

on the training data. The highest level of the Rule

Nodes belongs to EFuNN which demonstrates

network complexity. The reason is the lack of

proper strategic method to control the number of

the generated Rule Nodes for this method.

Moreover, the highest level of the testing phase

and the lowest level of the robustness are

produced through this network. As it is obvious

in the obtained results, the proposed PAFuNN is

an appropriate way to extract rules from the input

data inasmuch as it leads to a balance via all the

distinct criteria. In general, the overall results

illustrate the fact that PAFuNNs are more rapid,

more controllable, and less complex; nonetheless,

they are comparable with other networks in terms

of the accuracy and robustness of the obtained

results.

Table 2. The effects of choosing different learning automata in PAFuNN on Gas furnace dataset

Learning Automata

RMSE

Train

RMSE

Test

#Rule

Nodes

CPU Time

(Train-Test)

Robustness

(CPU Time-RMSE-#Rule Nodes)

Tsetline for SThr Tsetline for

EThr
0.11 0.133 13 1.0-0.2 1/(1.8+0.119+8)=0.100

Krylov for SThr Tsetline for

EThr
0.067 0.105 19 1.4-0.2 1/(2.4+0.133+8)=0.094

Krylov for SThr

Krylov for EThr
0.095 0.11 14 1.2-0.2 1/(2.6+0.087+12)=0.068

Tsetline for SThr

Krylov for EThr
0.105 0.134 11 1.0-0.2 1/(2.3+0.102+12)=0.069

Krinsky for SThr

Krylov for EThr
0.092 0.11 12

1.2-0.2

1/(2.6+0.080+13)=0.063

Krinsky for SThr

Krinsky for EThr
0.097 0.127 14 1.2-0.2 1/(2.5+0.096+17)=0.051

Krinsky for SThr

Tsetline for EThr
0.10 0.12 13 1.2-0.2 1/(2.0+0.127+8)=0.098

Tsetline for SThr

Krinsky for EThr
0.11 0.11 20 1.1-0.2 1/(2.1+0.107+13)=0.065

Krylov for SThr

Krinsky for EThr
0.103 0.130 13 1.2-0.3 1/(2.3+0.119+14)=0.060

0

0.02

0.04

0.06

0.08

0.1

0.12

Tsetline for SThr
Tsetline for EThr

Krylov for SThr
Tsetline for EThr

Krylov for SThr
Krylov for EThr

Tsetline for SThr
Krylov for EThr

Krinsky for SThr
Krylov for EThr

Krinsky for SThr
Krinsky for EThr

Krinsky for SThr
Tsetline for EThr

Tsetline for SThr
Krinsky for EThr

Krylov for SThr
Krinsky for EThr

RMSE Train

KEYVANPOUR ET AL POPULATION-BASED AUTOMATIC FUZZY NEURAL NETWORK FOR ONLINE…

38

Fig. 3 The effects of choosing different learning automata in PAFuNN on furnace dataset

An appropriate selection of learning automata for

both SThr and EThr parameters are effective in

resulting in acceptable accuracy and complexity

as Table 2 indicates. As the results show, utilizing

Krylov learning automata for sensitivity threshold

and Tsetline for Error threshold leads to the

minimum level of RMSE throughout the training

phase; however, the number of the Rule Nodes

generated through this network and the CPU

Time are too high. On the other hand, the

distinction between RMSE in the testing and

training phases is too high which shows the

occurrence of over-fitting on the training data.

Although selecting Tsetline learning automata for

sensitivity threshold and Krylov for Error

threshold leads to the minimum level of the

number of the Rule Nodes, it possesses the

highest level in RMSE for the testing phase.

Utilizing Tsetline learning automata for

sensitivity threshold and Tsetline for Error

threshold leads to the most robust network;

however, the RMSE of this network is high and

approaches maximum level for both the training

and testing phases. Although the testing RMSE is

low in utilizing Tsetline learning automata for

sensitivity threshold and Krinsky for Error

threshold, the number of the Rule Nodes is the

highest for it which means that both sensitivity

and error thresholds are set at a small value for

this network and a novel Rule Node will be

generated for most of the individuals utilizing this

network. Selecting Krinsky learning automata for

sensitivity threshold and Krylov for Error

threshold can be considered as the best choice

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Tsetline for SThr
Tsetline for EThr

Krylov for SThr
Tsetline for EThr

Krylov for SThr
Krylov for EThr

Tsetline for SThr
Krylov for EThr

Krinsky for SThr
Krylov for EThr

Krinsky for SThr
Krinsky for EThr

Krinsky for SThr
Tsetline for EThr

Tsetline for SThr
Krinsky for EThr

Krylov for SThr
Krinsky for EThr

RMSE Test

0

2

4

6

8

10

12

14

Tsetline for SThr
Tsetline for EThr

Krylov for SThr
Tsetline for EThr

Krylov for SThr
Krylov for EThr

Tsetline for SThr
Krylov for EThr

Krinsky for SThr
Krylov for EThr

Krinsky for SThr
Krinsky for EThr

Krinsky for SThr
Tsetline for EThr

Tsetline for SThr
Krinsky for EThr

Krylov for SThr
Krinsky for EThr

#Rule nodes

0

0.5

1

1.5

2

Tsetline for SThr
Tsetline for EThr

Krylov for SThr
Tsetline for EThr

Krylov for SThr
Krylov for EThr

Tsetline for SThr
Krylov for EThr

Krinsky for SThr
Krylov for EThr

Krinsky for SThr
Krinsky for EThr

Krinsky for SThr
Tsetline for EThr

Tsetline for SThr
Krinsky for EThr

Krylov for SThr
Krinsky for EThr

CPU Time

0

0.02

0.04

0.06

0.08

0.1

0.12

Tsetline for SThr
Tsetline for EThr

Krylov for SThr
Tsetline for EThr

Krylov for SThr
Krylov for EThr

Tsetline for SThr
Krylov for EThr

Krinsky for SThr
Krylov for EThr

Krinsky for SThr
Krinsky for EThr

Krinsky for SThr
Tsetline for EThr

Tsetline for SThr
Krinsky for EThr

Krylov for SThr
Krinsky for EThr

Robustness

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 14, NO 3, AUTUMN 2014

39

(a) The desired versus the predicted one step ahead value by

EFuNN when it trained on the first half of the data

(b) The trained from EFuNN is tested on the second half of dataset

(c) The desired versus the predicted one step ahead value by
sEFuNN when it trained on the first half of the data

(d) The trained from sEFuNN is tested on the second half of dataset

(e) The desired versus the predicted one step ahead value by
rEFuNN when it trained on the first half of the data set

(f) The trained from rEFuNN is tested on the second half of dataset

(g) The desired versus the predicted one step ahead value by

pEFuNN when it trained on the first half of the data

(h) The trained from pEFuNN is tested on the second half of

dataset

(i) The desired versus the predicted one step ahead value by

aEFuNN when it trained on the first half of the data

(j) The trained from aEFuNN is tested on the second half of data set

KEYVANPOUR ET AL POPULATION-BASED AUTOMATIC FUZZY NEURAL NETWORK FOR ONLINE…

40

(k) The desired versus the

predicted one step ahead value by

PAFuNN when it trained on the first half of the data

(l) The trained from PAFuNN is tested on the second half of
dataset

Fig. 4 The process of EFuNN, sEFuNN, rEFuNN, pEFuNN, aEFuNN and PAFuNN evolving on the Gas furnace data set

Based on Figure 4, PAFuNN consists of more

acceptable results in contrast to other networks

especially in the testing phase. The reason why it

is less accurate in the training phase compared

with other networks is restoring refuted samples

and generating Rule Nodes for them at the end of

the training phase.

b) The Second Experiment: Classification

In this experiment, the capability of PAFuNN in

classification task is assessed utilizing Iris

dataset. Table 3 indicates the RMSE for the

training and testing phases, the number of the

Rule Nodes, the CPU Time throughout the

training/testing phase, and the network robustness

on basis of EFuNN, sEFuNN, rEFuNN, pEFuNN

and aEFuNN. The same results are illustrated in

Figure 5 for better digestion. Table 4 presents the

effects of selecting various learning automata to

adjust PAFuNN’s thresholds. Figure 6 shows the

same results. Note that the resulted values are

average over 10 distinct runs. Figure 7

demonstrates the process of the networks

evolving out of the Iris dataset. The real versus

which is anticipated through the network values is

presented when it is trained according to the first

half of the Iris data (on-line, one-pass training).

The evolved network is then tested in an off-line

mode in the second half of the data.

Table 3. Comparing EFuNN, sEFuNN, rEFuNN, pEFuNN, aEFuNN and PAFuNN on Iris dataset

Algorithm

RMSE

Train

RMSE

Test

#Rule

Nodes

CPU Time

(Train-Test)

Robustness

EFuNN 0.099 0.488 8 1.3-0.2 1/(2.5+0.113+8)=0.094

sEFuNN 0.124 0.6 5 0.9-0.2 1/(2.0+0.196+19)=0.047

rEFuNN NAN NAN 11 6.0-0.4 1/(5.5+NAN+11)≈0

pEFuNN 0.106 0.100 4 1.1-0.2 1/(2.3+0.114+6)=0.118

aEFuNN

(Krylov for SThr

Krinsky for EThr)

0.145 0.075 6 0.7-0.2 1/(1.6+0.081+4)=0.176

PAFuNN 0.12 0.042 6
0.7-0.2

1/(1.8+0.085+5)=0.145

Fig. 5 Comparing EFuNN, sEFuNN, rEFuNN, pEFuNN, aEFuNN and PAFuNN on Iris data set

0

0.05

0.1

0.15

0.2

E
F

u
N

N
sE

F
u
N

N
rE

F
u
N

N
p
E

F
u
N

N
a

E
F

u
N

N
P

A
F

u
N

N

Robustness

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

E
F

u
N

N
sE

F
u
N

N
rE

F
u
N

N
p
E

F
u
N

N
a

E
F

u
N

N
P

A
F

u
N

N

CPU Time

0

2

4

6

8

10

12

E
F

u
N

N

sE
F

u
N

N

rE
F

u
N

N

p
E

F
u
N

N

a
E

F
u
N

N

P
A

F
u
N

N

#Rule Nodes

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

E
F

u
N

N
sE

F
u
N

N
rE

F
u
N

N
p
E

F
u
N

N
a

E
F

u
N

N
P

A
F

u
N

N

RMSE Test

0

0.05

0.1

0.15

0.2

E
F

u
N

N

sE
F

u
N

N

rE
F

u
N

N

p
E

F
u
N

N

a
E

F
u
N

N

P
A

F
u
N

N

RMSE Train

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 14, NO 3, AUTUMN 2014

41

The results show that none of the EFuNN,

sEFuNN and rEFuNN is appropriate for

classification task based on Iris dataset. Over-

fitting on the training data occurred to the first

two networks. For rEFuNN, the RMSE is at a

remarkably high level. Although pEFuNN has the

lowest number of Rule Nodes, the RMSE is

higher than aEFuNN and PAFuNN in the testing

phase of this network. Furthermore, it is the least

robust network in contrast with the two afore-

mentioned ones. The most robust network is

aEFuNN. Nevertheless, the testing RMSE in this

network is higher than that of PAFuNN. The

proposed PAFuNN has acceptable values for all

its evaluating parameters in spite of having less

complexity.

Table 4. The effects of choosing different learning automata in PAFuNN on Iris dataset

Learning Automata

RMSE

Train

RMSE

Test

#Rule

Nodes

CPU Time

(Train+Test)

Robustness

Tsetline for SThr Tsetline

for EThr
0.129 0.0.072 5 1.4+0.4 1/(3.5+0.058+5)=0.11

Krylov for SThr Tsetline

for EThr
0.099 0.066 10

1.5+0.2

1/(5+0.058+5)=0.099

Krylov for SThr

Krylov for EThr
0.141 0.065 5

1.4+0.3

1/(2.0+0.060+5)=0.141

Tsetline for SThr

Krylov for EThr
0.128 0.483 10 1.4+0.3 1/(2.6+0.106+5)=0.129

Krinsky for SThr

Krylov for EThr
0.129 0.260 5

1.2+0.2

1/(2.5+0.144+5)=0.130

Krinsky for SThr

Krinsky for EThr

0.100

0.483

10

0.9+0.3

1/(2.4+0.141+5)=0.132

Krinsky for SThr

Tsetline for EThr
0.145 0.072 4

0.7+0.3

1/(1.8+0.075+4)=0.170

Tsetline for SThr

Krinsky for EThr

0.129

0.260 5

1.2+0.3

1/(2.4+0.077+5)=0.133

Krylov for SThr

Krinsky for EThr
0.145 0.072 4

0.7+0.3

1/(2.3+0.111+10)=0.080

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Tsetline for SThr
Tsetline for EThr

Krylov for SThr
Tsetline for EThr

Krylov for SThr
Krylov for EThr

Tsetline for SThr
Krylov for EThr

Krinsky for SThr
Krylov for EThr

Krinsky for SThr
Krinsky for EThr

Krinsky for SThr
Tsetline for EThr

Tsetline for SThr
Krinsky for EThr

Krylov for SThr
Krinsky for EThr

RMSE Train

0

0.1

0.2

0.3

0.4

0.5

0.6

Tsetline for SThr
Tsetline for EThr

Krylov for SThr
Tsetline for EThr

Krylov for SThr
Krylov for EThr

Tsetline for SThr
Krylov for EThr

Krinsky for SThr
Krylov for EThr

Krinsky for SThr
Krinsky for EThr

Krinsky for SThr
Tsetline for EThr

Tsetline for SThr
Krinsky for EThr

Krylov for SThr
Krinsky for EThr

RMSE Test

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 14, NO 3, AUTUMN 2014

42

According to Table 4, a proper selection of

learning automata for both SThr and EThr

parameters is required so that they will result in

acceptable accuracy and complexity. As the

results show, utilizing Krylov learning automata

for sensitivity threshold and Tsetline for Error

threshold comprises the lowest amount of RMSE

throughout the training time; however, it is the

highest level regarding the number of the Rule

Nodes. Although selecting Krylov learning

automata for sensitivity threshold and Krinsky for

Error threshold consists of the lowest number of

Rule Nodes and CPU Time, it is the least robust

network among others. Utilizing Krinsky learning

automata for sensitivity threshold and Tsetline for

Error threshold can be considered as the best

option

(a) The desired versus the predicted one step ahead value by
EFuNN when it trained on the first half of the data set

(b) The trained from EFuNN is tested on the second half of data set

Fig. 6 The effects of choosing different learning automata in PAFuNN on Iris dataset

0

2

4

6

8

10

12

14

Tsetline for SThr
Tsetline for EThr

Krylov for SThr
Tsetline for EThr

Krylov for SThr
Krylov for EThr

Tsetline for SThr
Krylov for EThr

Krinsky for SThr
Krylov for EThr

Krinsky for SThr
Krinsky for EThr

Krinsky for SThr
Tsetline for EThr

Tsetline for SThr
Krinsky for EThr

Krylov for SThr
Krinsky for EThr

#Rule nodes

0

0.5

1

1.5

2

Tsetline for SThr
Tsetline for EThr

Krylov for SThr
Tsetline for EThr

Krylov for SThr
Krylov for EThr

Tsetline for SThr
Krylov for EThr

Krinsky for SThr
Krylov for EThr

Krinsky for SThr
Krinsky for EThr

Krinsky for SThr
Tsetline for EThr

Tsetline for SThr
Krinsky for EThr

Krylov for SThr
Krinsky for EThr

CPU Time

0

0.05

0.1

0.15

0.2

Tsetline for SThr
Tsetline for EThr

Krylov for SThr
Tsetline for EThr

Krylov for SThr
Krylov for EThr

Tsetline for SThr
Krylov for EThr

Krinsky for SThr
Krylov for EThr

Krinsky for SThr
Krinsky for EThr

Krinsky for SThr
Tsetline for EThr

Tsetline for SThr
Krinsky for EThr

Krylov for SThr
Krinsky for EThr

Robustness

KEYVANPOUR ET AL POPULATION-BASED AUTOMATIC FUZZY NEURAL NETWORK FOR ONLINE…

43

(c) The desired versus the predicted one step ahead value by

sEFuNN when it trained on the first half of the data set

(d) The trained from sEFuNN is tested on the second half of data set

(e) The desired versus the predicted one step ahead value by
rEFuNN when it trained on the first half of the data set

(f) The trained from rEFuNN is tested on the second half of data set

(g) The desired versus the predicted one step ahead value by

pEFuNN when it trained on the first half of the data set

(h) The trained from pEFuNN is tested on the second half of data set

(i) The desired versus the predicted one step ahead value by

aEFuNN when it trained on the first half of the data

(j) The trained from aEFuNN is tested on the second half of data set

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 14, NO 3, AUTUMN 2014

44

(k) The desired versus the predicted one step ahead value by
PAFuNN when it trained on the first half of the data

(l) The trained from PAFuNN is tested on the second half of data set

Fig. 7 The process of EFuNN, sEFuNN, rEFuNN, pEFuNN, aEFuNN and PAFuNN evolving on the Iris

As Figure 7 illustrates, PAFuNN generates more

acceptable results in contrast to other networks

especially in the testing phase. The reason why it

has less accuracy in the training phase compared

with other networks is restoring the refuted

samples and producing Rule Nodes for them at

the end of the training phase.

IV. Discussion

As illustrated through the paper, PAFuNNs are

appropriate for on-line knowledge discovery of

mega-databases. However, EFuNNs are

appropriate for on-line learning; nevertheless,

they have two important challenges which make

them inapplicable for real world problems and

large datasets which are as follows:

¶ There is no control over the number of the

neurons added to the network throughout

learning that results in a complex-structured

network (a network with a large number of

neurons and connections). In a complex neural

network, there is a high probability of over -

fitting the network on the input samples [30]

which is a problem that is absolutely vital for

noisy datasets.

¶ There are two thresholds in the EFuNNs

which have direct impact on the network's

accuracy and performance. An effective selection

of these two parameters can improve the network

performance considerably. In raw EFuNN, the

parameters are set to fix values. In an enhancing

self-tuning version, only the sensitivity threshold

is updated according to network weights.

Although this is more effective than the fix-

valued threshold, this does not necessarily lead to

the best value for the sensitivity threshold. On the

other hand, no method is utilized to adjust the

error threshold.

The PAFuNNs have the advantages of the

EFuNNs. Nonetheless, they possess two

important distinctions so as to overcome creating

neurons based on a set of refuted samples and

utilizing fixed structure learning automata in

order to get adapted to the network challenges.

On the other hand, in the context of Neural

Networks, a neural network is called as efficient

if it can classify testing dataset with the minimum

output error in an acceptable time. Considering

“RMSE”, and “CPU Time”, we tried to analyze

this property of the proposed network and

illustrate that PAFuNNs can reach to the

minimum RMSE in a short time. Furthermore,

one of the most important challenges in Artificial

Neural Networks is over-fitting networks on the

training samples. One of the possible ways to

avoid the problem is to prevent networks

structures to be complicated during the training

phase. By utilization of “Number of Rule Nodes”

as a criterion for evaluating the complexity of

network, we tried to demonstrate that our

proposed network has lowered the probability of

over-fitting. Moreover, the other important

criterion for evaluating a neural network is its

robustness for which we proposed a criterion that

calculates how robust the network is facing with

unpredictable changes (e.g. facing with noisy data

that change network weights in a wrong

direction).

Based on the results, PAFuNN consists of the

lowest RMSE in the testing phase among other

networks despite having a simple structure

consisting of a lower number of neurons. This

indicates that the implementation of the

RMSE=0.099

Rule Nodes=20

CPU Time= 0.7

RMSE= 0.016

CPU Time= 0.2

KEYVANPOUR ET AL POPULATION-BASED AUTOMATIC FUZZY NEURAL NETWORK FOR ONLINE…

45

population-based method decreases network

complexity although it can increase its accuracy

through reducing output errors. This occurs as a

result of globally considering the input samples

as close to a local view in order to add new

neurons to the network which leads to the

exclusion of ineffective nodes that are the causes

of over-fitting on the training samples. This is

obviously observed in comparing RMSE test and

RMSE train for PAFuNN. Since utilizing the

learning automata besides the population-based

method steers the network toward its minimum

output error value, it decreases the output error

even more.

The results also demonstrate that our proposed

method could successfully keep a balance in the

discussed criteria. In other words, while it has

declined error on testing samples in a short

duration, it does not let the network to be

complicated by controlling the number of neurons

and as a result does not allow the occurrence of

over-fitting.

V. Conclusion

In this paper, a novel connectionist model called

PAFuNN is presented. PAFuNNs have a five-

layer structure similar to that of EFuNNs, and are

appropriate for on-line knowledge discovery of

mega-databases. In this approach, after some

samples are presented to the network and a

definite number of Rule Nodes is created, if a

sample does not match any of the existing Rule

Nodes in the network, it will be stored, and

regularly, some Rule Nodes are created based on

a set of such samples unlike the EFuNN in which

each neuron is created only according to a single-

presented sample. Two fixed structure learning

automata (FSLA) are interconnected to the

network so as to adjust the sensitivity and error

threshold parameters in order to enhance the

entire performance of the system and minimize

the network output error. A comparative study of

PAFuNN and EFuNN on the basis of two

benchmark datasets indicates that PAFuNNs are

more rapid, more controllable, and less complex

although they are comparable with EFuNNs in

terms of the accuracy and robustness of the

obtained results.

The proposed method is also applicable for

new class of ECoS called evolving spiking neural

networks (eSNN) [31,32,33] which evolve their

structure and functionality in an on-line manner,

from incoming information. The model uses

trains of spikes as internal information

representation rather than continuous variables. In

other words, while the classical ECoS uses a

simple sigmoid model of a neuron, the further

developed evolving spiking neural network

architecture uses a spiking neuron model for

which similar ECoS principles and applications

are applicable. eSNN architectures used both

rank-order and time-based learning methods to

account for spatio-temporal data [34]. In these

networks, for every new input pattern, a new

neuron that represents center of a cluster in the

space of the synaptic weights is dynamically

allocated and connected; accordingly, the

population-based model presented in this paper

can be used after each chunks of information to

reduce the number of generated neurons and

result to a less complex network. On the other

hand, different parameters (i.e. the modulation

factor, sensitivity profiles, and threshold θ) are

utilized in eSNN which can be optimized using

learning automata.

 Our future works include using pruning and

aggregation methods beside the proposed method

to delete pointless Rule Nodes and improve the

memory usage; furthermore the utilization of

clustering methods such as K-means on the stored

samples after each chunks of data, and using the

cluster centers parameters for adding Rule Nodes

to the network might cause a higher accuracy in

the proposed method.

Acknowledgment

This work is supported by Research institute for

ICT. The authors are grateful to anonymous

referees of this paper for their constructive

comments.

.

 References
[1] Nikola Kasabov, “Evolving Fuzzy Neural

Networks for Supervised/ Unsupervised On-line,

Knowledge-based Learning” IEEE Trans. of

Systems, Man and Cybernetics, vol.31, no.6,

2001, pp. 902- 918.

[2] Kenneth McGarry, Stefan Wermter, John

MacIntyre, “Hybrid Neural Systems: From

Simple Coupling to Fully integrated neural

networks” Neural Computing Surveys, vol.2,

no.1, 1999, pp. 62-93.

[3] Nikola Kasabov, “Evolving Fuzzy Neural

Networks for On-line Knowledge Discovery”

University of Otago, Information Science

MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 14, NO 3, AUTUMN 2014

46

Discussion Papers Series, 2001,

http://hdl.handle.net/10523/1061 .

[4] A. Lotfi Zadeh, “Fuzzy Sets” Information and

control, vol.8, no.3, 1965, pp. 338-353.

[5] Berndt Müller, Joachim Reinhardt, and Michael

T. Strickland, “Neural Networks: An

Introduction” Springer Science & Business

Media, 2012.

[6] Nikola Kasabov, “Foundations of Neural

Networks, Fuzzy Systems and Knowledge”,

Marcel Alencar, 1996.

[7] Xin Wang, “On-line time series prediction

system—EFuNN-T” In Proc. Of the 5th Biannual

Conf. on Artificial Neural Networks and Expert

Systems, 2001, pp 82–86.

[8] Michael J. Watts, Nikola Kasabov, “Simple

evolving connectionist systems and experiments

on isolated phoneme recognition” In Proc. Of

IEEE Symposium on Combinations of

Evolutionary Computation and Neural Networks,

2000, pp. 232–239.

[9] Michael J. Watts, “A decade of Kasabov's

evolving connectionist systems: a review” IEEE

Trans. on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol.39, no.3, 2009,

pp.253- 269.

[10] Nikola Kasabov, “On-line learning, reasoning,

rule extraction and aggregation in locally

optimized evolving fuzzy neural networks” Neuro

computing, vol. 41, no.1, 2001, pp. 25-45.

[11] Kumpati S. Narendra, Mandayam AL Thathachar,

“Learning Automata: an introduction” Courier

Corporation, 2012.

[12] Mohammad Reza Meybodi, Hamid Beigy, “New

Learning Automata Based Algorithms for

Adaptation of Backpropagation Algorithm

Parameters” Neural Systems, vol. 12, no. 1, 2002,

pp. 45-67.

[13] S. Mousavi, S., H. Rabiee, M. Moshref, A.

Dabirmoghaddam, “Model Based Adaptive

Mobility Prediction in Mobile Ad-Hoc Networks”

In int. Conf. on Wireless Communications,

Networking and Mobile Computing, 2007, pp.

1713- 1716.

[14] Samira Noferesti, Hamed Shah-Hosseini, “A

Hybrid Algorithm for Solving Steiner Tree

Problem” Computer Applications, vol.41, no.5,

2012, pp. 14-20.

[15] Hamid Beigy, Mohammad Reza Meybodi,

Mohammad Bagher Menhaj, “Utilization of fixed

structure learning automata for adaptation of

learning rate in backpropagation algorithm” In

Pakistan J. of applied sciences, vol.2, no.4, 2002,

pp.437-443.

[16] Leonid Reznik, Vladimir Dimitrov, “Fuzzy

systems design: social and engineering

applications” Physica, vol. 17, 2013.

[17] Wael A. Farag, Victor H. Quintana, Germano

Lambert-Torres, “A Genetic-based Neuro-Fuzzy

Approach for Modeling and Control of Dynamical

Systems” IEEE Trans. on neural networks, vol. 9,

no.5, 1998, pp. 756-767.

[18] Jaesoo Kim, Nikola Kasabov, “HyFIS: adaptive

neuro-fuzzy inference systems and their

application to nonlinear dynamical systems”

Neural Networks, vol.12, no.9, 1999, pp.1301-

1319.

[19] Sung-Kwun Oh, Dong-Won Kim, Witold

Pedrycz, “Hybrid fuzzy polynomial neural

networks” Uncertainty, Fuzziness and

Knowledge-Based Systems, vol.10, no.3, 2002,

pp. 257 - 280.

[20] Krzysztof Simiński, “Neuro–rough–fuzzy

approach for regression modelling from missing

data” Int. J. Appl. Math. Comput. Sci., vol.22,

no.2, 2012, pp. 461-476.

[21] Gary G Yen, Phayung Meesad, “An effective

neuro-fuzzy paradigm for machinery condition

health monitoring” IEEE Trans. on Systems, Man,

and Cybernetics, Part B: Cybernetics, vol.31,

no.4, 2001, pp. 523-536.

[22] Krzysztof Simiński, “Analysis of new method of

initialisation of neuro-fuzzy systems with support

vector machines” Theorical and Applied

Informatics, vol.24, no.3, 2012, pp. 243–254.

[23] Filipe Aires, Michel Schmitt, Alain Chedin, and

Noëlle Scott, “The weight smoothing

regularization of MLP for Jacobian stabilization”

IEEE Trans. on Neural Networks, vol.10, no.6,

1999, pp. 1502-1510.

[24] Anna Esposito, Francesco Carlo Morabito,

Advances in Neural Networks: Computational and

Theoretical Issues, Edited by Simone Bassis, vol.

37, Springer, 2015.

[25] Dongjoo Park, Laurence R. Rilett, Gunhee Han,

“Spectral basis neural networks for real-time

travel time forecasting ” transportation

engineering, vol.125, no.6, 1999, pp.515-523.

[26] Vincent Vanhoucke, Andrew Senior, Mark Z.

Mao, “Improving the speed of neural networks on

CPUs” In Proc. Of Deep Learning and

Unsupervised Feature Learning NIPS Workshop,

vol. 1, 2011.

[27] Nikola Kasabov, Brendon Woodford, “Rule

Insertion and Rule Extraction from Evolving

Fuzzy Neural Networks: Algorithms and

Applications for Building Adaptive, Intelligent

Expert Systems”In Proc. Of IEEE Int. Fuzzy

Systems Conf., vol.3, 1999, pp 1406-1411.

KEYVANPOUR ET AL POPULATION-BASED AUTOMATIC FUZZY NEURAL NETWORK FOR ONLINE…

47

[28] Chia-Feng Juang, Ren-Bo Huang, Yang-Yin Lin,

“A Recurrent Self-Evolving Interval Type-2

Fuzzy Neural Network for Dynamic System

Processing” IEEE Trans. on Fuzzy Systems,

vol.17, no.5, 2009, pp.1092-1105.

[29] Chia-Feng Juang, Yang-Yin Lin, Chiu-Chuan Tu,

“A recurrent self-evolving fuzzy neural network

with local feedbacks and its application to

dynamic system processing” Fuzzy Sets and

Systems, vol.161, no.19, 2010, pp. 2552-2568.

[30] Simon S. Haykin, Neural Networks and Learning

Machines, Upper Saddle River: Pearson

Education, 2009.

[31] Nikola Kasabov, Lubica Benuskova, Simei

Gomes Wysoski, “A Computational Neurogenetic

Model of a Spiking Neuron” In Proc. Of IEEE Int.

Joint Conf. on Neural Networks, vol.1, 2005,

pp.446-451.

[32] Stefan Schliebs, Nikola Kasabov, “Evolving

spiking neural network—a survey” Evolving

Systems, vol.4, no. 2, 2013, pp.87-98.

[33] Nikola Kasabov, Evolving Connectionist

Systems: From Neuro-Fuzzy-, to Spiking-and

Neuro-Genetic, Springer Handbook of

Computational Intelligence, Springer Berlin

Heidelberg, 2015, pp. 771-782.

[34] Nikola Kasabov, Kshitij Dhoble, Nuttapod

Nuntalid, and Giacomo Indiveri, “Dynamic

Evolving Spiking Neural Networks for On-line

Spatio- and Spectro-Temporal Pattern

Recognition” Neural Networks, vol.41, 2013,

pp.188-201.

