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Abstract 

In this paper, a novel fuzzy connectionist 

system for incremental online learning and 

knowledge discovery called Population-based 

Automatic Fuzzy Neural Network (PAFuNN) 

is demonstrated in detail. PAFuNNs evolve out 

of incremental learning. New connections and 

neurons are created based on a population of 

samples while operating the system which has 

the advantage of controlling the number of 

neurons involved and leads to the low 

complexity of the network. Learning 

Automata is implemented in order to optimize 

the network parameters including sensitivity 

and error thresholds to enhance the 

performance of the entire system. Afterward, 

the proposed method is compared with 

Evolving Fuzzy Neural Network (EFuNN) as a 

general online learning machine on two case 

study datasets consisting of gas furnace and 

iris data for prediction and classification tasks 

leading to the thorough analysis of the effects 

of selecting appropriate automata. Less 

complex, more accurate and robust results are 

obtained for the proposed method in 

comparison with the EFuNN. 
 

Keywords: Evolving connectionist systems; 

Population-based Automatic fuzzy neural 

networks; On-line learning; Knowledge-based 

neural networks.   

I. Introduction  

Sophisticated methods and devices are required 

for building intelligent Information Systems (IS) 

which are capable of learning various types of 
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knowledge through their incremental interaction 

with the environment [1]. The major requirements 

of the IS are: (1) learning rapidly from a large 

database, (2) adapting incrementally in an online 

way, (3) having an open structure, (4) having a 

long term memory, (5) interacting with the 

environment continually, (6) dealing with 

knowledge, and (7) representing space and time 

adequately. There have been miscellaneous fuzzy 

connectionist systems which have endeavored to 

address the above-mentioned seven issues. 

Nowadays, we can see an increased use of neural 

networks for pattern recognition, classification 

and optimization tasks [2]. Knowledge Based 

Neural Networks (KBNNs) [3] are pre-structured 

neural networks allowing learning from data, rule 

insertion, rule extraction, adaptation and 

reasoning which is a combination of fuzzy logic 

systems [4] and neural networks [5]. Fuzzy 

Neural Network (FUNN) [6] is a particular set of 

KBNNs in which structure can be interpreted as a 

set of fuzzy rules. EFuNNs [1] have the 

advantages of traditional KBNNs; nonetheless, 

they learn in a one-pass online mode, evolve 

utilizing local element tuning while their structure 

fluctuates as the system operates. Although 

EFuNNs are suitable for learning on-line 

incoming data rapidly, they are of high 

complexity in as much as there is no control over 

the number of the nodes added through the 

operation of the system. Creating the nodes in 

EFuNN which is expected to be optimized is 

based on the currently presented data resulting in 

a huge number of Rule Nodes. Some aggregating 

[7] and [8] as well as pruning [3] approaches are 

proposed for the reduction of the increasing 

number of nodes (Rule Nodes). Evolutionary 

methods [9] are also proposed for the 

optimization of EFuNN parameters. These 

methods are mostly slow in terms of the running 

time. On the other hand, in basic EFuNNs, 

thresholds are considered to be fixed and there is 

no efficient strategy for optimizing them, apart 

from a self-tuning approach in which thresholds 

are tuned locally based on novel samples [10].  

The PAFuNN model presented here principally 

differs from all the fuzzy neural network models 

introduced so far despite the existing structural 

similarities. PAFuNNs have a five- layer structure 

similar to that of EFuNNs. Furthermore, it is 

appropriate for on-line knowledge discovery of 
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large databases. In this method, neurons and 

connections are created based on a set of refuted 

samples unlike the EFuNNs in which each neuron 

is produced only on the basis of a single 

presented sample, which has the advantage of 

controlling the number of neurons so that they 

would not get too large. In other words, in 

EFuNNs, there is no control over the number of 

neurons added to the network throughout network 

learning leading to a complex-structured network. 

In a complex neural network, there is a high 

probability of over-fitting the network on input 

samples which is considered to be a problem that 

is more vital for noisy datasets in which the 

network learns noisy data absolutely efficiently 

which leads to high output error in testing the 

dataset. In the proposed method, after some 

samples are presented to the network and a 

definite number of Rule Nodes are created, if a 

sample does not match any of the existing Rule 

Nodes in the network, it will be stored and 

regularly, some Rule Nodes are produced 

according to a set of such samples.  

The word ''automatic'' in the title of the proposed 

system is concerned with implementing learning 

automata so as to get adapted to the system 

parameters. Two fixed structured learning 

automata (FSLA) [11] are interconnected to the 

network in order to get adjusted to the sensitivity 

and error thresholds of the network to enhance 

the entire performance of the system and escape 

from the local minima. In raw EFuNN, the 

parameters are set to fixed values.   

A comparative analysis between PAFuNN and 

EFuNN on two benchmarks proves the fact that 

PAFuNNs are comparable with EFuNNs in terms 

of the accuracy and robustness of the obtained 

results; nevertheless, they are faster, more 

controllable, and less complex.  

The rest of this paper is organized as follows: 

In Section II, the PAFuNN is demonstrated and in 

Section III, the experimental consequences of 

applying the proposed algorithm on two case 

studies are analyzed. In the end, Section IV and V 

are associated with feedbacks. 

II.  Proposed Method 

PAFuNNs have a five-layer structure similar to 

that of EFuNNs [1, 3, 7], and are appropriate for 

on-line knowledge discovery of mega-databases. 

The PAFuNNs have the advantages of the 

EFuNNs. Nonetheless, they possess two 

important distinctions so as to overcome their 

current challenges: 

1- Creating neurons based on a set of refuted 

samples  

2- Utilizing Fixed Structure Learning Automata 

in order to get adapted to the network 

parameters 

They are both described in detail in the 

following. 

 

1) Creating neurons based on a population 

of rejected examples 

In order to control the entire number of the 

created nodes, the PAFuNN creates neurons on 

the basis of a set of refuted samples. To illustrate 

this, after some data samples are presented to the 

network and a definite number of Rule nodes are 

created, if a coming data does not match any of 

the existing Rule Nodes in the network, which 

means that the two aforementioned conditions in 

the EFuNN [3] are not satisfied for that input, it is 

stored and the next sample will be presented to 

the system. Otherwise, the network parameters 

are adjusted through hybrid 

supervised/unsupervised learning similar to the 

aforementioned EFuNN approach.  

 Regularly, at the end of some chunks of data 

presented to the network, Rule Nodes are created 

based on the set of the refuted stored samples 

utilizing the following algorithm instead of 

producing Rule Nodes for each single sample. 

The last two parameters C(r) and Age(r) are 

appropriate for network pruning algorithms [1]. 

As the Algorithm 1 illustrates, the fuzzified 

stored samples are sorted first on basis of their 

fuzzy distance calculated via Eq. (1). 
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Algorithm 1. Neurons creation based on a population of rejected examples 

S=Set of fuzzified stored examples; // S={Ef | Ef= (Xf,Yf)} 

Sort S elements according to their fuzzy distances;  

MD= maximum fuzzy distance between S elements; 

Number of categories: MD * sensitivity threshold; 

For i=1: Number of categories 

For its subset Sˈ={Efˈ| Efˈ =(Xfˈ, Yfˈ)} of S  

 Create a new rule node r; 

 //Set its parameters: 

     W1(r) = Mean of subset Xfˈ; 

     W2(r) = Mean of subset Yfˈ; 

      C(r)= Size (Sˈ) //number of samples pertain to r; 

      Age(r) = 0; 

 

𝐹𝐷(𝐸𝑓1,𝐸𝑓2)=
‖𝑋𝑓1−𝑋𝑓2‖

‖𝑋𝑓1+𝑋𝑓2‖
               (1) 

These sets of samples should then be categorized 

into some subsets based on the sensitivity 

threshold inasmuch as this threshold is the radius 

of the input hyper sphere of a Rule Node and 

indicates the samples associated with the Rule 

Node. For each category, a Rule Node is created 

and its parameters are set as demonstrated in the 

algorithm. 

2) Utilization of fixed structure learning 

automata for adaptation of network 

parameters  

In this part fixed structure learning automata [12, 

13, 14, 15] are utilized in order to adjust the 

PAFuNNs parameters to their best values and 

improve the network performance. Through 

interconnecting learning automata to the 

PAFuNN, parameters SThr (sensitivity threshold) 

and EThr (error threshold) are adjusted based on 

the output of the network for each data sample. 

The error threshold parameter EThr sets the error 

tolerance of the system and also defines the 

radius of the output cluster for each Rule Node. 

The sensitivity threshold parameter defines the 

minimum activation of the rule node r to a novel 

input vector x from a new sample (x, y) in order 

for the sample to be considered in its association 

with this Rule Node Two fixed structure learning 

automata are assigned to the rule layer and fuzzy 

output layer of PAFuNN so as to determine the 

sensitivity and error thresholds of those layers. 

Note that the PAFuNN is the environment for  

learning automata. The actions of the automata 

correspond to the values of the SThr and EThr 

parameters. The input (which is the response of 

the environment) of the first automaton is some 

function of the activation value of the selected 

Rule Node and that of the second automaton is a 

function of the fuzzy output error. The response 

of the environment to the first automaton is 

favorable if the activation value of the selected 

Rule Node (The Rule Node with the highest 

activation or in other words with the lowest FD 

value) is higher than the sensitivity threshold, and 

that of the environment to the second automaton 

is favorable if the fuzzy output error is lower than 

the error threshold value. Figure 1 shows the 

EFuNN and PAFuNN flow charts respectively. 

The red boxes are representing the differences 
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(a) (b) 

Fig. 1 The EFuNN (a) and PAFuNN Flow Chart (b) 
 

III. Experimental results and analysis 

In this section, the proposed method is 

analyzed utilizing two standard datasets 

called Furnace and Iris for classification 

and prediction tasks. 

1)  Dataset 

In order to conduct evaluation, two 

standard datasets which are explained as 

follows are utilized. Furnace dataset is one 

of the most prominent datasets which has 

been utilized by a majority of researchers in 

neuro-fuzzy engineering field [16, 17, 18, 

19, 20]. The dataset consists of 292 

consecutive values of methane during a 

time zone (t-4), and the carbon dioxide 

(CO2) produced in a furnace throughout a 

specific period (t-1) as input variables 

comprising the produced CO2 in a period of 

time (t) as an output variable. 

Iris dataset is a prominent classification 

dataset [21, 22] which consists of 150  

 

 

instances; 3 classes -setosa, versicolour and 

virginica and four attributes - X1-sepal  

length, X2-sepal width, X3-petal length, and 

X4-petal width. 

2)  Evaluation Technique 

The evaluation technique is the method 

proposed in [1] in which the network is 

trained on the basis of each data pair of 

input-output vectors as they become 

accessible in an on-line mode. Then, the 

network is tested on the spot to anticipate 
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the following data items before the latter is 

accommodated (learned) in the system. The 

network is trained according to the first half 

of the data (on-line, one-pass training) in 

this way. Then, the evolved network is 

tested in an off-line mode throughout the 

second half of the data. 

3)  Evaluation criteria 

To assess the feedbacks obtained through 

applying the proposed network to the two 

aforementioned tasks, various criteria are 

demonstrated in the following. 

¶ Root Mean Square Error (RMSE) is 

a standard and prominent criterion for 

evaluating neural networks [23, 24]. The 

root mean square error is calculated at each 

data point Di from the input data stream as 

shown in Eq. 2. 

𝑅𝑀𝑆𝐸(𝑖)

=𝑠𝑞𝑟𝑡(
𝑠𝑢𝑚{𝐸𝑟𝑟𝑡}𝑡=1,2,…,𝑖

𝑖
)               (2) 

Where Errt= (dt –ot)2 , dt is the desired 

output value and ot is the EFuNN output 

value produced for the tth input vector Dt. 

¶ CPU Time is a criterion for 

measuring neural networks efficiency [25, 

26] and consists of time spent on the 

training and testing phases of the network. 

The equation of CpuTime computing is 

presented in Eq. 3. 

𝑐𝑝𝑢𝑇𝑖𝑚𝑒= 

𝑐𝑝𝑢𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒+𝑐𝑝𝑢𝑇𝑒𝑠𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒; 𝑤ℎ𝑒𝑟𝑒: (3) 

𝑐𝑝𝑢𝑇𝑟𝑎𝑖𝑛𝑖𝑔𝑇𝑖𝑚𝑒

=𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑜𝑛 𝑐𝑝𝑢 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒                             

𝑐𝑝𝑢𝑇𝑒𝑠𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒

=𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑜𝑛 𝑐𝑝𝑢 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒                               

¶ The Number of Rule Nodes is one of the 

best ways to indicate the complexity of the 

Fuzzy Neural Networks [1]. The Eq. 4 

shown relation between complexity and 

Rule Nodes. 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

≈#𝑅𝑢𝑙𝑒 𝑁𝑜𝑑𝑒𝑠                                                                                        (4) 

¶ Robustness is a proposed criterion which 

calculates the robustness of the network 

when confronting with a changing 

architecture. To achieve such a purpose, 20 

per cent of the connection weights of the 

trained network are modified to prove how 

long it takes to get restored and what the 

features of the network will be then. 

Therefore, the robustness of the network is 

represented via parameters including CPU 

time, RMSE and the number of rules as 

represented in Eq.5. 

𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠

=
1

𝑐𝑝𝑢𝑇𝑖𝑚𝑒+𝑅𝑀𝑆𝐸+#𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒𝑠
                                               (5) 

4)  Comparison with other networks  

As the proposed method has taken its major 

concept from evolving fuzzy neural 

networks, the EFuNN and its progresses are 

utilized to be compared with the proposed 

method PAFuNN to accomplish the 

expected evaluation. 

¶ Evolving Fuzzy Neural Network 

(EFuNN) proposed through [27] is 

appropriate for on-line knowledge 

discovery of mega-databases and was 

demonstrated in Section II.  

¶ Self-tuning EFuNN (sEFuNN) proposed 

by [1] is one of the first improvements 

applied to EFuNNs. In this method, the 

aggregation and pruning of the Rule Nodes 

are applied to control the number of the 

Rule Nodes. Furthermore, the sensitivity 

threshold is updated utilizing Eq. 6.  

𝑆𝑗(𝑡+1)=𝑆𝑗(𝑡)+𝐹𝐷(𝑊1,𝑗(𝑡+1),𝑊1,𝑗(𝑡)) (6) 
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¶ Recurrent EFuNN (rEFuNN) is 

proposed in [28, 29] and has a recurrent 

structure. The recurrent structure in a 

rEFuNN emerges from regionally feeding 

the firing strength of a fuzzy rule back to 

itself. Due to the fact that this method is 

appropriate for extracting fuzzy rules in an 

on-line mode, it can be a proper method 

which can be compared with our proposed 

network. 

5)  Results 

The PAFuNN comprises two significant 

distinctions with basic EFuNN as stated in 

the previous section. In this section, these 

two alterations are analyzed separately for 

better digestion and finally both changes 

are applied to generate the proposed 

PAFuNN. To illustrate this, the first 

improvement (Adding Connectionist based 

on a set of refuted samples) applied to 

EFuNN is called pEFuNN and the second 

(Utilizing the Fixed Structure Learning 

Automata to adapted the network 

parameters) is called aEFuNN. The results 

are analyzed through two experiments 

which are basically called time series 

prediction and classification. 

a)  The First Experiment: Time Series 

Prediction 

In this section, the capability of PAFuNN 

in time series anticipation task is analyzed 

on the basis of furnace dataset. Table 1 

demonstrates RMSE for training and 

testing phases, the number of the Rule 

Nodes, CPU Time for training/testing 

phase, and network robustness for EFuNN, 

sEFuNN, rEFuNN, pEFuNN, aEFuNN and 

PAFuNN. For better digestion, the same 

results are illustrated in Figure 2. Table 2 

indicates the effect of various learning 

automata on different evaluating criteria. 

The same results are presented in Figure 3. 

Note that the resulted values are average 

over 10 distinct runs. Figure 4 demonstrates 

the process of the networks evolving out of 

the Gas furnace dataset. The real versus 

anticipated by the network values is 

presented when it is trained according to 

the first half of the gas-furnace data (on-

line, one-pass training). The evolved 

network is then tested in an off-line mode 

throughout the second half of the data. 

Table 1.  Comparing EFuNN, sEFuNN, rEFuNN, pEFuNN, aEFuNN and PAFuNN on Gas furnace data set 

 

Algorithm 

 

RMSE 

Train 

 

RMSE 

Test 

 

#Rule Nodes 

CPU Time 

(Train-Test) 

 

Robustness 

EFuNN 0.09 0.106 27 1.5-0.3 1/(3.2+0.079+27)=0.033 

sEFuNN 0.054 0.101 19 1.9-0.4 1/(3.1+0.064+7)=0.098 

rEFuNN 0.038 0.085 26 2-0.2 1/(4.1+0.05+26)=0.033 

pEFuNN 0.102 0.100 13 0.9-0.3 1/(2.8+0.06+12)=0.067 

aEFuNN 

(Krylov for SThr 

Krinsky for EThr) 

0.09 0.07 13 1.3-0.2 1/(2+0.077+16)=0.055 

PAFuNN 0.099 0.066 10 1.5-0.2 1/(5+0.058+5)=0.099 

 

     

Fig. 2 Comparing EFuNN, sEFuNN, rEFuNN, pEFuNN, aEFuNN and PAFuNN on Gas furnace data set 
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According to the results, rEFuNN consists of 

small RMSE during test time phase; nevertheless, 

the number of the Rule Nodes for this network 

which indicates the network complexity is 

remarkable. Consequently, the CPU Time level is 

high for it. rEFuNN robustness has the lowest 

level among other approaches which signifies the 

fact that a modification in  the network 

architecture would not result in an early 

appropriate repair.  Although sEFuNN has a high 

level of robustness reaching approximately 

maximum, it comprises the highest CPU duration. 

On the other hand, the distinction between RMSE 

regarding the training period and testing time is 

too much which represents network over-fitting 

on the training data. The highest level of the Rule 

Nodes belongs to EFuNN which demonstrates 

network complexity. The reason is the lack of 

proper strategic method to control the number of 

the generated Rule Nodes for this method. 

Moreover, the highest level of the testing phase 

and the lowest level of the robustness are 

produced through this network. As it is obvious 

in the obtained results, the proposed PAFuNN is 

an appropriate way to extract rules from the input 

data inasmuch as it leads to a balance via all the 

distinct criteria. In general, the overall results 

illustrate the fact that PAFuNNs are more rapid, 

more controllable, and less complex; nonetheless, 

they are comparable with other networks in terms 

of the accuracy and robustness of the obtained 

results. 

 

Table 2. The effects of choosing different learning automata in PAFuNN on Gas furnace dataset 

 

Learning Automata 

RMSE 

Train 

RMSE 

Test 

#Rule 

Nodes 

CPU Time 

(Train-Test) 

Robustness 

(CPU Time-RMSE-#Rule Nodes) 

Tsetline for SThr Tsetline for 

EThr 
0.11 0.133 13 1.0-0.2 1/(1.8+0.119+8)=0.100 

Krylov for SThr Tsetline for 

EThr 
0.067 0.105 19 1.4-0.2 1/(2.4+0.133+8)=0.094 

Krylov for SThr 

Krylov for EThr 
0.095 0.11 14 1.2-0.2 1/(2.6+0.087+12)=0.068 

Tsetline for SThr 

Krylov for EThr 
0.105 0.134 11 1.0-0.2 1/(2.3+0.102+12)=0.069 

Krinsky for SThr 

Krylov for EThr 
0.092 0.11 12 

1.2-0.2 

 
1/(2.6+0.080+13)=0.063 

Krinsky for SThr 

Krinsky for EThr 
0.097 0.127 14 1.2-0.2 1/(2.5+0.096+17)=0.051 

Krinsky for SThr 

Tsetline for EThr 
0.10 0.12 13 1.2-0.2 1/(2.0+0.127+8)=0.098 

Tsetline for SThr 

Krinsky for EThr 
0.11 0.11 20 1.1-0.2 1/(2.1+0.107+13)=0.065 

Krylov for SThr 

Krinsky for EThr 
0.103 0.130 13 1.2-0.3 1/(2.3+0.119+14)=0.060 
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Fig. 3 The effects of choosing different learning automata in PAFuNN on furnace dataset 

 

An appropriate selection of learning automata for 

both SThr and EThr parameters are effective in 

resulting in acceptable accuracy and complexity 

as Table 2 indicates. As the results show, utilizing 

Krylov learning automata for sensitivity threshold 

and Tsetline for Error threshold leads to the 

minimum level of RMSE throughout the training 

phase; however, the number of the Rule Nodes 

generated through this network and the CPU 

Time are too high. On the other hand, the 

distinction between RMSE in the testing and 

training phases is too high which shows the 

occurrence of over-fitting on the training data. 

Although selecting Tsetline learning automata for 

sensitivity threshold and Krylov for Error 

threshold leads to the minimum level of the 

number of the Rule Nodes, it possesses the 

highest level in RMSE for the testing phase. 

Utilizing Tsetline learning automata for 

sensitivity threshold and Tsetline for Error 

threshold leads to the most robust network; 

however, the RMSE of this network is high and 

approaches maximum level for both the training 

and testing phases. Although the testing RMSE is 

low in utilizing Tsetline learning automata for 

sensitivity threshold and Krinsky for Error 

threshold, the number of the Rule Nodes is the 

highest for it which means that both sensitivity 

and error thresholds are set at a small value for 

this network and a novel Rule Node will be 

generated for most of the individuals utilizing this 

network. Selecting Krinsky learning automata for 

sensitivity threshold and Krylov for Error 

threshold can be considered as the best choice 
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(a) The desired versus the predicted one step ahead value by 

EFuNN when it trained on the first half of the data 

 
(b) The trained from EFuNN is tested on the second half of dataset 

 

(c) The desired versus the predicted one step ahead value by 
sEFuNN when it trained on the first half of the data 

 

(d) The trained from sEFuNN is tested on the second half of dataset 

 

 

 

 

 

 

 

 
 

(e) The desired versus the predicted one step ahead value by 
rEFuNN when it trained on the first half of the data set 

 

(f) The trained from rEFuNN is tested on the second half of dataset 

 

 

 
 

 

 
 

 

 
 

 

 
(g) The desired versus the predicted one step ahead value by 

pEFuNN when it trained on the first half of the data 

 

(h) The trained from pEFuNN is tested on the second half of 

dataset 

 

(i) The desired versus the predicted one step ahead value by 

aEFuNN when it trained on the first half of the data 

 

 

 

 

 

 

(j) The trained from aEFuNN is tested on the second half of data set 
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(k) The desired versus the 

predicted one step ahead value by 

PAFuNN when it trained on the first half of the data 

 

(l) The trained from PAFuNN is tested on the second half of 
dataset 

Fig. 4 The process of EFuNN, sEFuNN, rEFuNN, pEFuNN, aEFuNN and PAFuNN evolving on the Gas furnace data set 

 

Based on Figure 4, PAFuNN consists of more 

acceptable results in contrast to other networks 

especially in the testing phase. The reason why it 

is less accurate in the training phase compared 

with other networks is restoring refuted samples 

and generating Rule Nodes for them at the end of 

the training phase. 

b)  The Second Experiment: Classification 

In this experiment, the capability of PAFuNN in 

classification task is assessed utilizing Iris 

dataset. Table 3 indicates the RMSE for the 

training and testing phases, the number of the 

Rule Nodes, the CPU Time throughout the 

training/testing phase, and the network robustness 

on basis of EFuNN, sEFuNN, rEFuNN, pEFuNN 

and aEFuNN. The same results are illustrated in 

Figure 5 for better digestion. Table 4 presents the 

effects of selecting various learning automata to 

adjust PAFuNN’s thresholds. Figure 6 shows the 

same results. Note that the resulted values are 

average over 10 distinct runs. Figure 7 

demonstrates the process of the networks 

evolving out of the Iris dataset. The real versus 

which is anticipated through the network values is 

presented when it is trained according to the first 

half of the Iris data (on-line, one-pass training). 

The evolved network is then tested in an off-line 

mode in the second half of the data. 

Table 3. Comparing EFuNN, sEFuNN, rEFuNN, pEFuNN, aEFuNN and PAFuNN on Iris dataset 

 

Algorithm 

 

RMSE 

Train 

 

RMSE 

Test 

 

#Rule 

Nodes 

 

CPU Time 

(Train-Test) 

 

Robustness 

EFuNN 0.099 0.488 8 1.3-0.2 1/(2.5+0.113+8)=0.094 

sEFuNN 0.124 0.6 5 0.9-0.2 1/(2.0+0.196+19)=0.047 

rEFuNN NAN NAN 11 6.0-0.4 1/(5.5+NAN+11)≈0 

pEFuNN 0.106 0.100 4 1.1-0.2 1/(2.3+0.114+6)=0.118 

aEFuNN 

(Krylov for SThr 

Krinsky for EThr) 

0.145 0.075 6 0.7-0.2 1/(1.6+0.081+4)=0.176 

PAFuNN 0.12 0.042 6 
0.7-0.2 

 
1/(1.8+0.085+5)=0.145 

 

     

Fig. 5 Comparing EFuNN, sEFuNN, rEFuNN, pEFuNN, aEFuNN and PAFuNN on Iris data set 
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The results show that none of the EFuNN, 

sEFuNN and rEFuNN is appropriate for 

classification task based on Iris dataset. Over-

fitting on the training data occurred to the first 

two networks. For rEFuNN, the RMSE is at a 

remarkably high level. Although pEFuNN has the 

lowest number of Rule Nodes, the RMSE is 

higher than aEFuNN and PAFuNN in the testing 

phase of this network. Furthermore, it is the least 

robust network in contrast with the two afore-

mentioned ones. The most robust network is 

aEFuNN. Nevertheless, the testing RMSE in this 

network is higher than that of PAFuNN. The 

proposed PAFuNN has acceptable values for all 

its evaluating parameters in spite of having less 

complexity. 

Table 4. The effects of choosing different learning automata in PAFuNN on Iris dataset 

 

Learning Automata 

RMSE 

Train 

RMSE 

Test 

#Rule 

Nodes 

CPU Time 

(Train+Test) 

 

Robustness 

Tsetline for SThr Tsetline 

for EThr 
0.129 0.0.072 5 1.4+0.4 1/(3.5+0.058+5)=0.11 

Krylov for SThr Tsetline 

for EThr 
0.099 0.066 10 

1.5+0.2 

 
1/(5+0.058+5)=0.099 

Krylov for SThr 

Krylov for EThr 
0.141 0.065 5 

1.4+0.3 

 
1/(2.0+0.060+5)=0.141 

Tsetline for SThr 

Krylov for EThr 
0.128 0.483 10 1.4+0.3 1/(2.6+0.106+5)=0.129 

Krinsky for SThr 

Krylov for EThr 
0.129 0.260 5 

1.2+0.2 

 
1/(2.5+0.144+5)=0.130 

Krinsky for SThr 

Krinsky for EThr 

0.100 

 

0.483 

 

10 

 

0.9+0.3 

 
1/(2.4+0.141+5)=0.132 

Krinsky for SThr 

Tsetline for EThr 
0.145 0.072 4 

0.7+0.3 

 
1/(1.8+0.075+4)=0.170 

Tsetline for SThr 

Krinsky for EThr 

0.129 

 
0.260 5 

1.2+0.3 

 
1/(2.4+0.077+5)=0.133 

Krylov for SThr 

Krinsky for EThr 
0.145 0.072 4 

0.7+0.3 

 
1/(2.3+0.111+10)=0.080 
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According to Table 4, a proper selection of 

learning automata for both SThr and EThr 

parameters is required so that they will result in 

acceptable accuracy and complexity. As the 

results show, utilizing Krylov learning automata 

for sensitivity threshold and Tsetline for Error 

threshold comprises the lowest amount of RMSE 

throughout the training time; however, it is the 

highest level regarding the number of the Rule 

Nodes. Although selecting Krylov learning 

automata for sensitivity threshold and Krinsky for 

Error threshold consists of the lowest number of 

Rule Nodes and CPU Time, it is the least robust 

network among others. Utilizing Krinsky learning 

automata for sensitivity threshold and Tsetline for 

Error threshold can be considered as the best 

option 

 

 

(a) The desired versus the predicted one step ahead value by 
EFuNN when it trained on the first half of the data set 

 

(b) The trained from EFuNN is tested on the second half of data set 

 

 

 

Fig. 6 The effects of choosing different learning automata in PAFuNN on Iris dataset 
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(c) The desired versus the predicted one step ahead value by 

sEFuNN when it trained on the first half of the data set 

 

(d) The trained from sEFuNN is tested on the second half of data set 

 

(e) The desired versus the predicted one step ahead value by 
rEFuNN when it trained on the first half of the data set 

 

(f) The trained from rEFuNN is tested on the second half of data set 

 

(g) The desired versus the predicted one step ahead value by 

pEFuNN when it trained on the first half of the data set 

 

(h) The trained from pEFuNN is tested on the second half of data set 

 

(i) The desired versus the predicted one step ahead value by 

aEFuNN when it trained on the first half of the data 

 

(j) The trained from aEFuNN is tested on the second half of data set 
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(k) The desired versus the predicted one step ahead value by 
PAFuNN when it trained on the first half of the data 

 

(l) The trained from PAFuNN is tested on the second half of data set 

Fig. 7 The process of EFuNN, sEFuNN, rEFuNN, pEFuNN, aEFuNN and PAFuNN evolving on the Iris 

 
As Figure 7 illustrates, PAFuNN generates more 

acceptable results in contrast to other networks 

especially in the testing phase. The reason why it 

has less accuracy in the training phase compared 

with other networks is restoring the refuted 

samples and producing Rule Nodes for them at 

the end of the training phase. 

IV. Discussion 

As illustrated through the paper, PAFuNNs are 

appropriate for on-line knowledge discovery of 

mega-databases. However, EFuNNs are 

appropriate for on-line learning; nevertheless, 

they have two important challenges which make 

them inapplicable for real world problems and 

large datasets which are as follows: 

¶ There is no control over the number of the 

neurons added to the network throughout 

learning that results in a complex-structured 

network (a network with a large number of 

neurons and connections). In a complex neural 

network, there is a high probability of over -

fitting the network on the input samples [30] 

which is a problem that is absolutely vital for 

noisy datasets. 

¶ There are two thresholds in the EFuNNs 

which have direct impact on the network's 

accuracy and performance. An effective selection 

of these two parameters can improve the network 

performance considerably. In raw EFuNN,   the 

parameters are set to fix values. In an enhancing 

self-tuning version, only the sensitivity threshold 

is updated according to network weights. 

Although this is more effective than the fix-

valued threshold, this does not necessarily lead to 

the best value for the sensitivity threshold. On the 

other hand, no method is utilized to adjust the 

error threshold.   

The PAFuNNs have the advantages of the 

EFuNNs. Nonetheless, they possess two 

important distinctions so as to overcome creating 

neurons based on a set of refuted samples and 

utilizing fixed structure learning automata in 

order to get adapted to the network challenges. 

On the other hand, in the context of Neural 

Networks, a neural network is called as efficient 

if it can classify testing dataset with the minimum 

output error in an acceptable time.  Considering 

“RMSE”, and “CPU Time”, we tried to analyze 

this property of the proposed network and 

illustrate that PAFuNNs can reach to the 

minimum RMSE in a short time. Furthermore, 

one of the most important challenges in Artificial 

Neural Networks is over-fitting networks on the 

training samples. One of the possible ways to 

avoid the problem is to prevent networks 

structures to be complicated during the training 

phase.  By utilization of “Number of Rule Nodes” 

as a criterion for evaluating the complexity of 

network, we tried to demonstrate that our 

proposed network has lowered the probability of 

over-fitting. Moreover, the other important 

criterion for evaluating a neural network is its 

robustness for which we proposed a criterion that 

calculates how robust the network is facing with 

unpredictable changes (e.g. facing with noisy data 

that change network weights in a wrong 

direction). 

Based on the results, PAFuNN consists of the 

lowest RMSE in the testing phase among other 

networks despite having a simple structure 

consisting of a lower number of neurons. This 

indicates that the implementation of the 
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population-based method decreases network 

complexity although it can increase its accuracy 

through reducing output errors. This occurs as a 

result of globally considering the input samples 

as close to a local view in order to add new 

neurons to the network which leads to the 

exclusion of ineffective nodes that are the causes 

of over-fitting on the training samples. This is 

obviously observed in comparing RMSE test and 

RMSE train for PAFuNN. Since utilizing the 

learning automata besides the population-based 

method steers the network toward its minimum 

output error value, it decreases the output error 

even more. 

The results also demonstrate that our proposed 

method could successfully keep a balance in the 

discussed criteria. In other words, while it has 

declined error on testing samples in a short 

duration, it does not let the network to be 

complicated by controlling the number of neurons 

and as a result does not allow the occurrence of 

over-fitting.  

V.  Conclusion 

In this paper, a novel connectionist model called 

PAFuNN is presented. PAFuNNs have a five-

layer structure similar to that of EFuNNs, and are 

appropriate for on-line knowledge discovery of 

mega-databases. In this approach, after some 

samples are presented to the network and a 

definite number of Rule Nodes is created, if a 

sample does not match any of the existing Rule 

Nodes in the network, it will be stored, and 

regularly, some Rule Nodes are created based on 

a set of such samples unlike the EFuNN in which 

each neuron is created only according to a single-

presented sample. Two fixed structure learning 

automata (FSLA) are interconnected to the 

network so as to adjust the sensitivity and error 

threshold parameters in order to enhance the 

entire performance of the system and minimize 

the network output error. A comparative study of 

PAFuNN and EFuNN on the basis of two 

benchmark datasets indicates that PAFuNNs are 

more rapid, more controllable, and less complex 

although they are comparable with EFuNNs in 

terms of the accuracy and robustness of the 

obtained results. 

The proposed method is also applicable for 

new class of ECoS called evolving spiking neural 

networks (eSNN) [31,32,33] which evolve their 

structure and functionality in an on-line manner, 

from incoming information. The model uses 

trains of spikes as internal information 

representation rather than continuous variables. In 

other words, while the classical ECoS uses a 

simple sigmoid model of a neuron, the further 

developed evolving spiking neural network 

architecture uses a spiking neuron model for 

which similar ECoS principles and applications 

are applicable.  eSNN architectures used both 

rank-order and time-based learning methods to 

account for spatio-temporal data [34]. In these 

networks, for every new input pattern, a new 

neuron that represents center of a cluster in the 

space of the synaptic weights is dynamically 

allocated and connected; accordingly, the 

population-based model presented in this paper 

can be used after each chunks of information to 

reduce the number of generated neurons and 

result to a less complex network. On the other 

hand, different parameters (i.e. the modulation 

factor, sensitivity profiles, and threshold θ) are 

utilized in eSNN which can be optimized using 

learning automata. 

 Our future works include using pruning and 

aggregation methods beside the proposed method 

to delete pointless Rule Nodes and improve the 

memory usage; furthermore the utilization of 

clustering methods such as K-means on the stored 

samples after each chunks of data, and using the 

cluster centers parameters for adding Rule Nodes 

to the network might cause a higher accuracy in 

the proposed method. 
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