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 

Abstract—This paper uses data fusion based on fuzzy integral 

theory for stator winding inter-turn short circuit fault diagnosis in 

induction motors. Time-domain features are extracted from 

current signals, and a technique is proposed to choose appropriate 

features. The fuzzy c-mean analysis method is employed to classify 

different modes. It is used to choose the membership values of each 

feature for each fault mode. Finally, different features are fused at 

feature-level and decision-level using fuzzy integral data fusion to 

produce diagnostic results. Results show that fuzzy data fusion 

method performs very well for fault diagnosis in a 4hp laboratory 

induction motor. 

 
Index Terms— Data fusion, Fault diagnosis, Fuzzy integral, 

Stator three-phase current 

 

I. INTRODUCTION 

NDUCTION motors are widely used in industry. Motors are 

exposed to various faults, caused by environmental 

conditions such as humidity, dust, etc. If these faults are not 

diagnosed in early stages, they may lead to failure in other parts 

of motor. Short-circuit defect in stator windings is a common 

fault accrued in induction motors. Stator winding fault accounts 

for 36% of all induction motor failures, and it is the most 

important electrical failure in induction motors [1]. Detection 

of this fault in its early stages is really important due to the 

increase of eddy current and the loss of windings insulation. 

Therefore, various methods which are based on models [2], 

signal processing [2,3], and intelligent methods [4] have been 

widely used in diagnosing this fault. In the proposed methods, 

mostly the information obtained from one signal is used for 

fault diagnosis which may in some cases result in misdiagnosis. 

One proposed approach to avoid this problem is information 

combination from different sources. The result obtained from 

data fusion is normally more reliable than those obtained from 

individual sensors. Data fusion can be performed in three 

different levels: data level, feature level, and decision level. The 

appropriate fusion level is chosen according to the fusion 

method and accuracy requirements [5]. In current paper, data 

fusion is performed in both feature and decision levels. 

Various techniques have been applied for data fusion, for 

example data fusion based on estimation methods [6], 

classification methods [7], inference methods [8], artificial 

intelligence methods [7,9] and multiple methods. Fuzzy integral 
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can be considers as a subset of artificial intelligence methods. 

It is somehow different from other methods, as it considers both 

the evidence supplied by each information source and the 

expected worth of each subset of sources in its decision making 

process. In addition, fuzzy measure reflects importance of each 

feature and interactions among features. Therefore fuzzy 

integral is a valuable tool in overcoming the inherent 

ambiguities present in any decision making system [10]. Many 

machinery faults have fuzzy nature, and the use of fuzzy 

techniques are thus appropriate for their fault diagnosis. 

Vibration and temperature signals have been used to provide 

new monitoring techniques in the two past decades. However, 

these sensors are expensive and they should be carefully 

mounted on the motor. Some recent research works have been 

directed toward using electrical sensors such as current and 

voltage for condition monitoring [11]. 

In this paper the fusion of signals measured by electrical 

current sensors has been used for diagnosing induction motor 

stator windings short-circuit fault. For feature level fault 

diagnosis, after collecting feature sets, the fuzzy c-means 

(FCM) analysis method is employed to classify induction motor 

different modes, and it is used to identify the relation between 

a feature set and a fault prototype. Gained results are fused by 

the Choquet fuzzy integral and induction motor final mode is 

identified. For decision level fault diagnosis, the FCM 

algorithm is used for primary diagnosis of feature groups fault 

mode, and system final mode is identified by the Sugeno fuzzy 

integral. The results show the proposed method performs very 

well in fault diagnosis of a 4hp laboratory induction motor. 

This paper consists of six sections. The second section 

explains the required math tools. Third section provides brief 

descriptions of fuzzy measure and fuzzy integral theories and 

their applications for fault diagnosis of induction motors. Data 

acquisition and feature extraction method are described in 

section 4. Results and discussion are presented in section 5. 

II. MATH TOOLS 

A. Fuzzy C-mean 

FCM algorithm is one of the most popular fuzzy clustering 

methods. FCM has been extensively used in various fields of 

research. The purpose of this unsupervised algorithm is 

classification of samples in predetermined groups. FCM divides 

samples to C predetermined clusters. Clusters are considered as 
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fuzzy sets with various membership degrees in the interval

 0 1 . A membership degree shows the amount of belonging 

of each sample in each cluster. The membership value of each 

cluster is determined with the center of that cluster by 

minimizing the following cost function. FCM algorithm will be 

updated iteratively [12]. 
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In (1) N is the number of samples, M is the input samples 

dimension, and C is the number of clusters. 
ijmD is the 

Euclidean distance between ith sample and jth cluster center with 

mth dimension.  ijmU U is the membership function matrix 

with values between zero and one.  f shows the overlap between 

clusters and takes real values greater than 1. CC is the cluster 

center vector. 

In this paper is used FCM clustering algorithm because of: 

 In non-fuzzy clustering (also known as hard clustering), 

data is divided into distinct clusters, where each data point 

can only belong to exactly one cluster. In fuzzy clustering, 

data points can potentially belong to multiple clusters. 

 Differs from the k-means objective function by the 

addition of the membership values and the fuzzifier. 

 Gives best result for overlapped data set and 

comparatively better then k-means algorithm. 

 Unlike k-means where data point must exclusively belong 

to one cluster center here data point is 

assigned membership to each cluster center as a result of 

which data point may belong to more than one cluster 

center. 

 

B. Fuzzy Measure and Fuzzy Integral 

Fig. 1. shows a multiclass neuron model of a fuzzy integral. 

In this figure  1 2, ,..., tO O O O is the set of information of 

different sources, and measurements are classified in 

1 2, ,..., qC C C classes. Let  1 2, ,..., nX x x x be a finite set 

which represents a set of n features of information sources. 

Sugeno fuzzy measure    : 0 1g P X  , where  P X  

is the power set of X, is a real-valued function that satisfies the 

following properties [10]: 

 ( ) 0g    and ( ) 1g X   

 ( ) ( )g A g B  if A B  

 If  1 2, ,...,i iA x x x is an increasing sequence of subset 

of X, then    1
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Fig. 1.  Multiclass fuzzy neuron model 

 

A conventional way of presenting fuzzy measure in the finite 

case is to use a network presentation. The network of the 2n 

coefficients of the fuzzy measure is equivalent to the network 

of the power set element with respect to set inclusion relations. 

Fig. 2. is an example of the network when n=4. 

Nodes of the network present subsets of power set or fuzzy 

measure coefficients, and links of the network present order 

relations based on ‘  ’ for fuzzy measure coefficients. A fuzzy 

measure coefficient is always equal to zero in the first node, and 

equal to one in the last node. A path is set of chained links, 

starting from the first node  g and arriving to the last node

 Xg . Therefore, the bolded path in Fig. 2. implies 

3 2 4 1x x x x   . According to this path, the coefficients

  1g x ,   1 4,g x x and   1 2 4, ,g x x x are used in fuzzy 

integral [13]. 

A fuzzy density function is defined as   i

ig g x . Fuzzy 

density value ig is interpreted as the importance of the single 

information source ix in any class. Solving the following 

equation leads to a polynomial in   of degree n-1: 
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An approximation of   can be obtained using Newton’s 

method. Sugeno measure  ig A  is computed as: 
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Fig. 2.  The network of fuzzy measure coefficient for n=4 

 

Sugeno and Choquet fuzzy integrals of a function 

 : 0 1h X   with respect to fuzzy measure g are defined 

respectively as follows: 
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Suppose  1 0nh x   and  0 0g A  in Choquet fuzzy 

integral, and    1 ... nh x h x  in both of them [10, 14]. 

III. FUZZY INTEGRAL FUSION FOR FAULT DIAGNOSIS 

Data fusion happens in different levels. In this part fuzzy data 

fusion is introduced for fault diagnosis in feature level and 

decision level based on FCM classification and Sugeno fuzzy 

measure. 

A. Feature-Level Fuzzy Integral Data Fusion for Fault 

Diagnosis 

Fig. 3. shows fault diagnosis using feature-level fuzzy 

integral data fusion. Stator three-phase current signals are 

divided into two sets of historical data and current condition 

monitoring data. 

The first step is to gain a degree of partial matching, which 

reflects a degree of matching between each feature and each 

fault mode. Current condition monitoring data are used to 

identify partial matching of various features. Various methods 

such as the probability density function (pdf) exist for 

determining the degree of partial matching. In this paper, the 

FCM analysis method is used for this purpose. The degree of 

partial matching is determined using a degree of the fuzzy 

membership function using the FCM algorithm. The 

computation of fuzzy measure is needed after determining 

partial matching for the computation of fuzzy integral. For 

acquiring fuzzy measure which reflects the importance of each 

feature and the interactions among features,   should be 

computed from (3), and the fuzzy density from the average of 

fuzzy membership degree for each feature per each fault mode. 

Training data (historical data) are used to identify fuzzy density 

of various features. Then according to (5), a degree of global 

matching is obtained. Fuzzy integral includes both the current 

confidence level and the overall confidence level per each 

feature and each fault mode [15, 16]. 
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Fig. 3.  Structure of feature level fault diagnosis model
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B. Decision-Level Fuzzy Integral Data Fusion for Fault 

Diagnosis 

Fig. 4. shows fault diagnosis process using decision-level fuzzy 

integral fusion. The feature groups are entered into classifiers, 

and the output of the classifiers includes recognition rate and 

primary diagnosis results. Primary diagnosis results are 

obtained by current condition monitoring data. Then they are 

given a Fuzzy interpretation for providing a confidence level of 

classifiers for a given object and creating partial matching. 

These two sections are equal to creating partial matching in the 

feature-level fuzzy integral. The recognition rate shows the total 

ability of the classifiers in fault diagnosis which is usually 

obtained from statistical methods and training data (historical 

data). It is used as a fuzzy density for calculating fuzzy measure 

[15, 16]. 

IV. EXPERIMENTAL RESULT 

A. Data Acquisition 

In order for the proposed method to be realized, it was used 

for a short-circuit fault diagnosis in a 4hp induction motor stator 

windings. So as to create fault in the stator windings, the 

induction motor stator windings were extended out of the frame 

to simulate fault scenarios, as explained in TABLE I. To limit 

the short circuit loop current, a variable external resistor was 

connected between the taps of the shorted portion of the 

winding turns (see Fig. 5). An LA-55p current sensor was used 

to measure the induction motor's three-phase current signals, 

and the sampling data were transferred to a computer via the 

ADVABTECH PCI-1711 data card. The laboratory setup is 

shown in Fig. 6. 

Data collection maximum frequency was 10KHz and thus 

100000 data samples were collected. For improving the 

accuracy of data collection, this process was repeated 20 times 

for each mode. Fig. 7. shows the current signals for three 

different healthy/faulty scenarios.
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Fig. 4.  Structure of decision level data fusion model 

 

TABLE I 
DESCRIPTION OF INDUCTION MOTOR FAULTS 

Symbol Fault kind 

1F  Free fault (healthy) 

2F  20% of winding stator is short circuit 

3F  
15% of winding stator is short circuit 

4F  7% of winding stator is short circuit 

5F  10% of winding stator is short circuit 

6F  2% of winding stator is short circuit 

7F  5% of winding stator is short circuit 
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Fig. 5.  Schematic diagram of stator windings fault 
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Fig. 6.  Laboratory setup 
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Fig. 7.  Stator phase-a current in 3 different modes 

 

B. Features Calculation 

The features obtained in the diagnosis process by data fusion 

are very important and vital, because the correct mode detection 

of system depends on the quality of the measurement data and 

suitability of the features extracted from them. 

In this paper, the statistical information of time-based data 

are used for obtaining the features of the measured signal. 

Features are calculated based on signal samples distribution. 

Lots of features are calculated based on the moments. If a 

change condition causes a change in the probability density 

function of the signal, then the moments may also change. 

Features are computed from moment coefficients including 

mean, standard deviation, skewness, and kurtosis: 
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As a measure of the uncertainty, first a histogram is estimated 

and then the entropy is calculated: 

 

   ( ) . ln lnsE x Entr P x P x    (7) 

 

Where  is the width of the histogram samples, x is a discrete 

time signal, and P(x) is the distribution on the whole signal. 

Finally, another important feature in time domain is the rms. 

Also, non-dimensional feature parameters in time domain are 

more popular, such as shape factor and crest factor: 
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In (8), rmsx , x


and px are the rms value, absolute value 

and peak value, respectively [17]. 

The above features are calculated for stator three-phase 

current signals, and among them are extracted proper features 

and proper feature groups for system mode diagnosis. 

 

C. Feature Selection 

As mentioned above some features may not be useful and 

may even lead to misdiagnosis. Therefore, appropriate features 

are selected among the extracted ones. 

In this paper, proper features are chosen based on partial 

matching recognition rate. The recognition rate is defined as the 

number of the correct modes detected per all the data for each 

mode. 

In the decision level, a feature group consisting of 3 features 

is selected for each phase, and each feature group includes the 

feature set that has the largest recognition rate average over all 

system modes (TABLE II). In the feature level, first, amongst 8 

features of each phase, 3 features that are proper (based upon 

the above algorithm for each mode and phase) are determined. 

Then amongst all the 9 selected features of three-phase, 5 

features with higher recognition rates are selected for each fault 

mode (TABLE III). According to TABLE III, the features 

obtained from phases b and c include information that are more 

useful than those obtained from phase a, for different modes. 

Fig. 8. shows the membership functions of the third feature 

group and the standard deviation feature, which are selected for 

all modes except for mode 6. The curves are obtained by fitting 

to Gaussian curves. As is evident from this figure, the 

membership functions of these features are similar to 

probability density functions which usually do not have normal 

distributions. The membership functions of the other feature 

groups and the other selected features are similar to those in Fig. 

8. 

 

TABLE II 

SELECTED FEATURE GROUPS IN DECISION LEVEL 

 Phase a Phase b Phase c 

Feature groups {CF., Std, Entr.} {RMS, Std, Entr.} { Entr., Std, Kurt} 
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TABLE III 

SELECTED FEATURES OF ANY PHASE AND ANY MODE IN FEATURE LEVEL 

Fault mode Phase a Phase b Phase c 

1F  RMS Entr. Std. Std. RMS Entr. Std. Kurt. RMS 

2F  Std. Entr. Kurt. Std. Kurt. RMS Std. CF. Entr. 

3F  Std. Mean RMS Std. RMS CF. Kurt. RMS Entr. 

4F  SF. Kurt. RMS RMS Std. Kurt. Kurt. SF. Entr. 

5F  CF. Kurt. Entr. RMS Std. SF. Std. CF. Entr. 

6F  Entr. Kurt. RMS CF. Entr. Mean SF. Kurt. Entr. 

7F  SF. Mean Std. Std. Kurt. RMS CF. Std. Kurt 

 

  

(a) (b) 

Fig. 8.  Membership functions of selected features a) Membership functions of third feature group, b) Membership functions of Std 

 

V. RESULT AND DISCUSSION 

In the experiment process 70% of data was used for training 

and the remaining 30% for test. In this part, results from fuzzy 

integral are checked for both feature level and decision level. 

A. Fault Diagnosis Based on Feature Level Fuzzy Integral 

Data Fusion 

Fuzzy measure and partial matching enter the fuzzy integral 

according to Fig. 3. Seven fault modes are considered. 

Appropriate feature group is selected for each mode, so there 

are 7 feature groups. Choquet fuzzy integral is calculated for 

each feature group and finally, system final mode is found by 

multiplication rule. 

TABLE IV. shows the fuzzy membership degree average and 

the average of fuzzy integral. Although some features have 

averages higher than the fuzzy integral averages, it can't be 

concluded that these features have higher diagnosis ability than 

the fuzzy integral. For example the two features of standard 

deviation and rms of phases b and c in first mode have higher 

average values than the fuzzy integral value, and this means that 

these four features have higher abilities in diagnosing the first 

mode of the system. However just using these features can't 

diagnose the correct modes of the system, because they show 

the correct mode of the system for 1F , and if another fault 

breaks out, these features may not correctly diagnose the system 

mode. The total average also implies the higher ability of fuzzy 

integral in correct diagnosis of the system modes. 

 

B. Fault Diagnosis Based on Decision Level Fuzzy Integral 

Data Fusion 

Initial diagnosis and fuzzy measure of classifications output 

enter the Sugeno fuzzy integral according to Fig. 4. The largest 

of fuzzy integral results show the system correct mode. 

TABLE V. compares the recognition rate of classifiers and 

the fuzzy integral. According to this table, some classifiers do 

not have the ability to correctly diagnose the system modes, 

while the fuzzy integral diagnoses the correct mode of the 

system with a high confidence. For example, the first classifier 

cannot correctly diagnose the 4F  mode (7% short-circuit), 

while the fuzzy integral has the ability to correctly diagnose it 

with a recognition rate of 70%. This issue is evident in the total 

average of the recognition rate of each classifier and fuzzy 

integral. 

The decision-level fuzzy integral has less informational 

bandwidth, less accuracy and less reliability compared to the 

feature-level fuzzy integral. Even though the decision-level 

fuzzy integral has managed to diagnose all system modes with 

a high recognition rate, it has a smaller diagnosis percentage. 

For example, according to TABLE V. in the 5F mode (10% 

short-circuit), even though the decision level fuzzy integral has 

diagnosed this fault with the recognition rate of 100%, 

according to TABLE VI, its diagnosis percentage is 46% on 

average, while according to TABLE IV, this mode was 

diagnosed with the diagnosis percent of 94% using the feature-

level fuzzy integral. 
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TABLE IV 

MEAN OF FUZZY MEMBERSHIP DEGREE AND FUZZY INTEGRAL IN FEATURE LEVEL 

Fault mode 
Membership degree mean Fuzzy integral 

mean Phase a Phase b Phase c 

1F  
RMS Entr. Std. Std. RMS Entr. Std. Kurt. RMS 

0.96 
0.51 0.60 0.47 0.99 0.97 0.90 0.97 0.93 0.97 

2F  
Std. Entr. Kurt. Std. Kurt. RMS Std. CF. Entr. 

0.96 
0.76 0.69 0.50 0.99 0.96 0.98 0.88 0.95 0.94 

3F  
Std. Mean RMS Std. RMS CF. Kurt. RMS Entr. 

0.96 
0.82 0.75 0.60 0.99 0.99 0.88 0.91 0.97 0.88 

4F  
SF. Kurt. RMS RMS Std. Kurt. Kurt. SF. Entr. 

0.89 
0.45 0.42 0.33 0.94 0.94 0.89 0.84 0.70 0.82 

5F  
CF. Kurt. Entr. RMS Std. SF. Std. CF. Entr. 

0.94 
0.59 0.42 0.34 0.97 0.94 0.99 0.88 0.85 0.76 

6F  
Entr. Kurt. RMS CF. Entr. Mean SF. Kurt. Entr. 

0.750 
0.52 0.44 0.47 0.79 0.74 0.65 0.81 0.59 0.60 

7F  
SF. Mean Std. Std. Kurt. RMS CF. Std. Kurt 

0.84 
0.64 0.50 0.38 0.95 0.98 0.96 0.57 0.45 0.47 

Total mean 0.5337 0.8983 0.8203 0.9005 

 
 

TABLE V 
RECOGNITION RATE OF CLASSIFIERS AND FUZZY INTEGRAL IN DECISION LEVEL 

 
Fault mode 

total mean 

1F  2F  3F  4F  5F  6F  7F  

Recognition rate of classifiers 
& fuzzy integral (%) 

FCM 1 60 95 85 15 40 30 40 52.14 

FCM 2 100 100 100 90 30 80 85 83.57 

FCM 3 100 100 95 85 100 55 50 83.57 

Fuzzy integral 100 100 100 70 100 75 90 90.71 

 

 
TABLE VI 

MEAN OF FUZZY MEMBERSHIP DEGREE AND FUZZY INTEGRAL IN DECISION LEVEL 

 Fault mode 

1F  2F  3F  4F  5F  6F  7F  

Mean of classifiers 

membership degree & fuzzy 

integral 

FCM 1 0.57 0.83 0.81 0.19 0.36 0.29 0.39 

FCM 2 0.87 0.82 0.90 0.68 0.28 0.77 0.78 

FCM 3 0.99 0.89 0.88 0.77 0.99 0.52 0.47 

Fuzzy integral 0.75 0.73 0.76 0.42 0.46 0.42 0.53 

 

VI. CONCLUSION 

In this paper, short-circuit fault in induction motor stator 

windings was diagnosed using fuzzy data fusion in the two 

levels of feature and decision. Amongst the time features 

extracted from the stator three-phase current signals, proper 

features for fusion in each level were extracted according to the 

local diagnosis of the data based upon the proposed method. 

In the feature-level fault diagnosis, fuzzy density was 

obtained by the membership functions obtained from the FCM 

algorithm, and fuzzy measure was calculated by fuzzy density. 

Also the local diagnosis of each feature was performed using 

fuzzy membership functions, and in the end, the final mode of 

the system was identified by applying feature local diagnosis 

and fuzzy measure to the fuzzy integral. In the decision level, 

feature groups were categorized by the FCM algorithm, and the 

initial diagnosis result of each feature group for each mode was 

decided. Then the fuzzy integral was used to combine initial 

results and create final decision. 

Both of the proposed methods were tested on a laboratory 

induction motor for short circuit fault diagnosis. The results 

showed the capability of both proposed methods in separating 

the fault source, as these methods consider both the evidence 

supplied by each information source and the expected worth of 

each subset of sources in its decision making process. 
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