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1 

Abstract— High blood glucose levels in the body named 

diabetes can increase damage in kidneys, eyes, heart and etc. In 

this investigation, a novel TS fuzzy static output feedback control 

structure is proposed to regulate the blood glucose level in the 

pre-defined desired values for type 1 diabetes using exogenous 

intra-venous insulin delivery rate. To this end, a nonlinear delay 

differential equation framework is considered to model the blood 

glucose/insulin endocrine metabolic regulatory system. The 

governing equations of the blood glucose/insulin model are 

approximated by a TS fuzzy model and then the proposed static 

output feedback controller is designed for this TS model. 

 
Index Terms— Blood glucose, Glucose/insulin metabolism model, 

Delay differential equation, TS fuzzy systems, Output feedback 

controller.  

 

I. INTRODUCTION 

igh levels of blood glucose known as a major chronic 

disease named "diabetes". This disease arises because of 

defects in insulin production, insulin action or both and so the 

body cannot adjust the amount of glucose in the blood [1, 2]. 

The main role of two hormones which are glucagon and 

insulin is to control the level of glucose in the blood. A 

healthy range of the blood glucose is identified as 70–120 

mg/dL in healthy people [3, 4]. 

Failure and damage in different organs such as kidneys, eyes 

and heart and also abnormalities of lipoprotein metabolism, 

periodontal disease and hypertension occur in patients with 

high levels of blood glucose [5, 6]. Therefore, studying the 

dynamics behavior of the blood glucose/insulin and 

investigating the effects of insulin therapy in regulation of the 

amount of blood glucose are classified as significant subjects 

in the biomedical engineering literature. In this way, various 

methods have been proposed to model the blood 

glucose/insulin dynamics in literature. 

Bergman et al. [7] proposed an original mathematical model 

for glucose disappearance to estimate insulin sensitivity. 

Caumo and Cobelli [8] modified the Bergman's model and 
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established a new two-compartment minimal model of glucose 

kinetics to describe the time-varying impulse response of the 

glucose system. Considering six-compartments representation 

of glucose homeostasis, Sorensen [9] investigated a novel 

mathematical model composed of almost 19 Ordinary 

Differential Equations (ODE) which illustrate physiologic 

compartments and spaces on the organ and tissue levels. 

Gaetano and Arino [10] prove that the delay of insulin 

secretion during the intravenous injection tolerance test can 

affect the dynamics behavior of the blood glucose, and 

consequently suggested a new model that can clarify the 

essential physiological mechanism with considering the delay 

of insulin secretion. In the above-mentioned models, constant 

insulin supply at the same average rate has been considered. 

Tolic et al. [11] developed a mathematical model of the 

insulin/glucose feedback regulation in man in which the 

effects of an oscillatory supply of insulin contain. Applying 

the mass conservation law, Li et al. [12] model the blood 

glucose/insulin endocrine metabolic regulatory system by 

Delay Differential Equations (DDE) with two time delay 

terms for insulin secretion. 

One of the significant solutions for regulating the level of 

blood glucose in the desired healthy interval is designing a 

proper nonlinear control scheme to determine the insulin 

injection as the control input by a real-time algorithm. To this 

end, many investigators proposed and implemented various 

control strategies for different glucose/insulin mathematical 

models. In [13-15], Proportional-Integral-Derivative (PID) 

controllers have been proposed for model-less glucose/insulin 

systems in which the control rule is designed based on 

experimental data. Patra et al. [16] proposed a switching 

optimal robust controller for blood glucose regulation using 

clinically acceptable insulin delivery rates. Using a novel 

parametric programming algorithm, Dua et al. [17] suggested 

a model-based control technique for patients with type 1 

diabetes. Palumbo et al. [18] considered the problem of 

tracking a desired plasma glucose evolution using intra-venous 

insulin administration in which the glucose/insulin system is 

modeled via a discrete-delay nonlinear differential equation. 

Using Mamdani-type fuzzy logic, Yasini et al. [19] proposed a 

knowledge-based controller for type 1 diabetes mellitus 

patients to control the level of glucose in the blood in the 

presence of uncertainty in model parameters and measurement 

noise. Considering the augmented minimal mode as the 

nonlinear model of type 1 diabetes, Goharimanesh et al. [20] 
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compared the performances of fuzzy type-1 and fuzzy type-2 

controllers for blood glucose regulation with uncertainties in 

the model due to the daily meals and sudden stresses. 

Duangpim and Assawinchaichote [21] utilized Takagi-

Sugeno-Kang (TSK) fuzzy scheme to model the nonlinear 

system of blood glucose and adjust the blood glucose in an 

acceptable range by means of linear matrix inequality (LMI) 

approach and H∞ control structure. 

Surveying the literature, one can obtain that nonlinear 

discrete DDEs can better predict the dynamics behavior of 

glucose/insulin compared to the mathematical models derived 

based on nonlinear ODEs. This is because of the existence of 

delay in insulin secretion [22-24]. Consequently, it is expected 

that DDEs framework as a more accurate glucose/insulin 

model are chosen for controller design. A closed loop control 

system may be implemented based on the information 

provided from glucose sensors which presents the values of 

necessary states for calculation of the insulin infusion rate as 

the control signal. 

In this paper, we propose a new method for designing a TS 

fuzzy static output feedback controller for the class of 

nonlinear systems with time-delay which are represented by 

the T-S model. In contrast with the other existing results in the 

literature for the static output feedback controller design of TS 

fuzzy systems such as [25-27], in our proposed method the 

equality constraint has not been directly used in the design of 

LMIs which improves the feasibility of the design conditions. 

Moreover, we approximate the glucose/insulin system 

dynamics by a TS fuzzy model and then apply the proposed 

static output feedback design method to this TS model. 

Finally, we illustrate the validity of the proposed controller in 

tracking pre-defined values of glucose and insulin. 

II. PROBLEM FORMULATION AND PRELIMINARIES 

In this section, we describe the glucose/insulin system and 

the TS fuzzy system with time-delay and then propose an 

approximate T-S fuzzy model of the glucose/insulin system 

will be obtained. Finally, some useful lemmas which will be 

used in the proof of the main results of the paper will be 

presented in this section. 

The mathematical model of the glucose/insulin metabolism 

To describe the dynamics behavior of the glucose/insulin 

metabolism, we consider a time-delay differential equation 

framework as a more accurate glucose/insulin mathematical 

model. Due to proper balance between accuracy and 

simplicity, the single discrete-delay differential equation 

system reported in [24] is an appropriate glucose/insulin 

model. Considering apparent delay τg with which the pancreas 

varies secondary insulin release in response to varying plasma 

glucose concentrations and control input u(t) as the exogenous 

intra-venous insulin delivery rate, the corresponding DDE of 

this model is written as [24] 

 max

( ) ( ) ( ) ,

( ) ( ) ( ) ( ),

gh

xgi

G

iG

xi g

I

T
G t K G t I t

V

T
I t K I t f G t u t

V


  

    

 (1) 

where the nonlinearity f (·) indicates the mathematical 

model of the pancreatic insulin delivery rate  and is specified 

as [24]: 

 
 
 

*

*

.

1








G
G

f G
G

G  

(2) 

In abovementioned equations, state variables G(t) and I(t) 

indicate plasma glycemia and insulinemia, respectively. 

Furthermore, 
xgi

K illustrates the rate of glucose uptake by 

tissues, 
gh

T is the net balance between hepatic glucose output 

and insulin-independent zero-order glucose tissue uptake, 
G

V

shows the apparent distribution volume for glucose, 
xi

K

indicates the apparent first-order disappearance rate constant 

for insulin, 
maxiG

T is the maximal rate of second-phase insulin 

release, 
I

V  states the apparent distribution volume for insulin, 

γ specifies the progressivity with which the pancreas reacts to 

circulating glucose concentrations and *G  is the glycemia at 

which the insulin release is half of its maximal rate [24]. 

A. TS Fuzzy Model with time-delay 

A nonlinear system can be exactly represented by a TS 

fuzzy model using some IF-THEN rules, each of which define 

the linear input-output relation of the original nonlinear 

system. A TS fuzzy model is constructed by nonlinear 

combination of these linear models. The general form of a TS 

model with time-delay is described by the following equation: 

2 1

1

( ) ( ( )){ ( ) ( ) ( )+ ( )},
r

i i i i i

i

x t h t A x t A x t B u t B w t 


      

(3) 

1

( ) ( ( )) ( ),
r

i i

i

y t h t C x t


  (4) 

where 
1 2

( ) [ ( )  ( )  ( )]
p

t t t t    , 
1
( ) ~ ( )

p
t t   are fuzzy 

premise variables which are functions of state variables, r is 

the number of rules,   is the time-delay, ( )  nx t    is the 

state vector, u( )  mt    is the control input vector, 

( )  qy t    is the output vector, ( )  dw t    is the 

disturbance signal, and A   n n

i

  ,   n n

iA   , 

2   n m

iB   , 
1   n d

iB   , C   q n

i

   stand for linear 

sub-system matrices. Moreover, the functions ( ( ))
i

h t  are 

defined as: 

1

( ( )) ( ( )) ( ( ))
r

i i i

i

h t w t w t  


  , (5) 

with 
1

( ( )) ( ( ))
p

i ij j

j

w t M t 


  and 
ij

M  is the membership 

http://www.sciencedirect.com/science/article/pii/S1877050916303623


ASEMANI et al A NEW DESIGN METHOD FOR TS FUZZY STATIC OUTPUT FEEDBACK CONTROL                         22 

 

function associated with the i-th rule and j-th premise variable. 

It is noted that in a TS model, the following equations hold: 

1

0 ( ( )) 1,

( ( )) 1.

i

r

i

i

h t

h t






 


 (6) 

Notation. The following notation will be used in this paper: 





r

i
ii AhA

1

)(

. 

(7) 

 

B. TS fuzzy representation of the glucose/Insulin system 

In the glucose model, one needs to set the value of the  

( )G t and ( )I t  into non-zero values and the controller design 

issue is in fact a tracking problem. Thus, we first define 

( ) ( ) ( )refG t G t G t  and ( ) ( ) ( )refI t I t I t  , then the dynamical 

equations (1)-(2) are transformed to the following error 

dynamics: 

 max

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),

( ) ( ) ( ) ( )

( ) ( ) ( ).

xgi xgi ref xgi ref

gh

xgi ref ref ref

G

xi xi ref ref

iG

g ref g

I

G t K G t I t K G t I t K I t G t

T
K G t I t G t

V

I t K I t K I t I t

T
f G t G t u t

V
 

   

  

   

    

 (8) 

In this paper, we consider the signals 

( ) ( ) ( )
gh

xgi ref ref ref

G

T
K G t I t G t

V
    and ( ) ( )

xi ref ref
K I t I t   as 

disturbance signals 
1
( )w t  and 

2
( )w t , respectively. Thus, the 

dynamical error system is given by: 

 

1

max

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),

( ) ( ) ( ) ( )

( ) ( ).

xgi xgi ref

xgi ref

iG

xi g ref g

I

G t K G t I t K G t I t

K I t G t w t

T
I t K I t f G t G t

V

u t w t

 

  

 

     

 

 (9) 

In the sequel, we derive the TS model of the error system (9). 

Using the sector nonlinearity approach [28] and by assuming 

min max( ) [ , ]G t G G  with positive pre-scribed values of 

min max,G G , it is not hard to show that the following time-delay 

TS fuzzy model is an approximation of the original nonlinear 

error dynamics (9): 

 
4

2 1

1

4

1

( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ),

i i i i i

i

i i

i

x t h A x t A x t B u t B w t

y t h C x t

 







    







 

 

 

 

(10) 

where ( ) ( ) ( )gt G t G t    
, 

1 2( ) ( ) ( )
T

w t w t w t    , and: 

max

1 2 ,
0

xgi ref xgi

xi

K I K G
A A

K

  
   

  

 

min

3 4 ,
0

xgi ref xgi

xi

K I K G
A A

K

  
   

  

 

1 3

max

0 0
,

0
A A

f

 
 

   
  

 

2 4

min

0 0
,

0
A A

f

 
 

   
  

 

21 22 23 24

11 12 13 14 2

0
,

1

,

B B B B

B B B B I

 
     

 

   

 

  1 2 3 4 1 0 ,C C C C     

(11) 

with: 

 

 

max
max

( )

max
min

( )

( )
max ,

( )

( )
min .

( )

iG

G tI

iG

G tI

f G tT
f

V G t

f G tT
f

V G t

 

 

 
(12) 

Moreover, the nonlinear aggregation functions ( ( ))ih t  for

1,...,4i   are defined as: 

1 1 1

2 1 2

3 2 1

4 2 2

( ( )) ( ( )) ( ( )),

( ( )) ( ( )) ( ( )),

( ( )) ( ( )) ( ( )),

( ( )) ( ( )) ( ( )),

g

g

g

g

h t M G t N G t

h t M G t N G t

h t M G t N G t

h t M G t N G t

 

 

 

 

 

 

 

 

 
(13) 

where: 

min
1

max min

2 1

( )
( ( )) ,

( ( )) 1 ( ( )),

G t G
M G t

G G

M G t M G t






 

 

min

1

max min

2 1

( ( ))
( ( )) ,

( ( )) 1 ( ( )),

g

g

g g

f G t f
N G t

f f

N G t N G t




 

 
 



   

 

(14) 

with: 

 ( )
( ( )) .

( )

g

g

g

f G t
f G t

G t







 


 (15) 

C. Preliminaries 

The following lemmas will be used in the proof of the main 

results of this section. 

Lemma 1 [29]: For all matrices , , 1,...,ij i j r  , if the 

following inequalities hold: 

0, 1,..., ,ii i r    (16) 

2
0, , 1,..., , ,

1
ii ij ji i j r i j

r
      


 (17) 

then the following inequality holds: 

1 1

( ) ( ) 0.
r r

i j ij

i j

h h  
 

  (18) 

Lemma 2 [30]: Suppose that matrix m nM  with 
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( )rank M m  is given. Assuming that n nX  is a 

symmetric matrix, then the equality MX XM holds for a 

matrix m mX  if and only if X is partitioned by:  

11

22

0
,

0

T
X

X V V
X

 
  

 

 
 (19)   

where M is decomposed as [ 0] TM U S V . 

III. NOVEL TS FUZZY H∞ DELAYED STATIC OUTPUT FEEDBACK 

CONTROLLER DESIGN 

In this section, we propose a new method for TS fuzzy H∞ 

static output feedback controller design of TS fuzzy systems 

with time-delay in the form of  

(3)-(4). The design goal is to find a controller such that the 

following H∞-performance criterion is satisfied: 

2

2
2

( )
( ) 0

( )
sup ,

( )

L

w t L L
w t

z t

w t





  
(20) 

where 
1( ) ( )z t C x t  is the controlled output and   is the 

disturbance attenuation level.  

To design the static output feedback controller, we assume 

that the TS fuzzy system output matrices are the same; i.e. 

2iC C  ( 1,...,i r ). 

A. Static output feedback controller 

The static output feedback control signal is defined as: 

1

( ) ( ( )) ( ),
r

i i

i

u t h t K y t


  (21) 

where Ki’s are controller gains to be designed. 

B. Closed-loop dynamics 

By substituting the controller (21) in  

(3)-(4), the following closed-loop dynamics will be derived: 

1 1

2 1

( ) ( ( )) ( ( ))

{( ) ( ) ( )+ ( )},

r r

i j

i j

i i j i i

x t h t h t

A B K C x t A x t B w t

 



 



   



 

(22) 

or equivalently: 

1( ) ( ) ( ) ( ),clx t A x t A x t B w t 

      (23) 

Where 
2

1 1

( ( )) ( ( )){( )
r r

cl i j i i j

i j

A h t h t A B K C  
 

   and 

notation (7) is used. 

It should be noted that the approximate TS model of the 

glucose/insulin system in  

 

 

(10) is in the form of the T-S fuzzy system with time-delay  

(3)-(4) and the proposed results of the next section will be 

applicable to this system. 

C. Novel TS fuzzy controller design  

In the following Theorem, we propose some LMIs to design 

the controller (21) such that the performance criterion (21) is 

satisfied for the closed-loop system (23). 

Theorem 1. Suppose that the TS fuzzy system output 

matrix C is represented by its SVD form as [ 0] TC U S V . 

Then, the closed-loop TS system with time-delay (23) is 

asymptotically stable when ( ) 0w t   and satisfies the 

performance index (21) with ( ) 0w t   if there exist symmetric 

positive definite matrices 
11X ,

22X ,
1P  and matrices 

( 1,..., )iM i r such that the following LMIs hold: 

0, 1,..., ,ii i r    (24) 

2
0, , 1,..., , ,

1
ii ij ji i j r i j

r
     


 (25) 

where: 

         

11

1 1

1

1

1

0 0
,

0 0

0 0

T

ij i i

T

i
ij

T

i

A X B XC

X A P

B I

C X I







 
 
 

   
 

 
 

     
(26) 

with 11

2 2 1( )T

ij i i j i i jA X B M C A X B M C P      , 
2   

and: 

   11

22

0
.

0

T
X

X V V
X

 
  

 

                                                            (27) 

Moreover, the static output feedback controller gains 
iK  are 

derived by:  

                                   1

2 ,j jK M X                                        (28) 

for 1,...,j r , where 1 1

2 11X USX S U  . 

Proof: The Lyapunov-Krasovsky functional candidate is 

defined as: 

1
0

( ( )) ( ) ( ) ( ) ( ) ,T TV x t x t Px t x t s P x t s ds


            (29) 

where 0TP P   and 
1 1 0TP P  . The derivative of (29) 

along the closed-loop trajectories (23) is obtained as:  

 

 

1

1

1

1 1 1

( ( ))

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).

T T T

T T T

T T

cl cl

T
T T

T T T T

V x t

x t Px t x t Px t x t P x t

x t P x t x t Pw w Px t

x t PA A P P x t

x t PA x t x t A Px t

x t P x t x t PB w w B Px t

 

 

 

 

 

 

 

  

    

  

   

    

                         (30) 

 

It is well-known that the following inequality is a sufficient 

condition for (21): 

 
2( ( )) ( ) ( ) ( ) ( ) 0.T TV x t z t z t w t w t                                   (31) 

 

Replacing ( ( ))V x t  in (30) into (31) 

( ) ( )

( ) ( ) 0,

( ) ( )

T
x t x t

x t x t

w t w t

 

   
   

      
   
   

                                                          (32) 

with: 
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 
1 1 1 1

1

2

1

( )

0

0

T T

cl cl

T

T

PA A P P C C PA PB

A P P

B P I

  

 





 

   
 
   
 
 
 

 

or equally:  

 
1 1 1 1

1

2

1

( )

0 0.

0

T T

cl cl

T

T

PA A P P C C PA PB

A P P

B P I

  

 





 

   
 
  
 
 
 

                  (33)  

Pre-and post-multiplying (33)Error! Reference source not 

found. by ( , , )diag X X I  with 
1X P   results in:  

 
1

1

2

1

0 0,

0

T

T

A X B

X A P

B I



 





 

 
 
  
 
 
 

where                           (34)  

1 1 1( )T T

cl clA X X A P XC C X     and
1 1 0P XP X   is an 

LMI variable. The term ( )T

cl clA X X A  is expressed as:  

 2 2

( )

.

T

cl cl

T

A X X A

A X B K CX A X B K CX

 

     



   
                        (35) 

Now, suppose that the constraint CX XC holds, where X

is a matrix variable. Then, equation (35) can be written by:  

 2 2

( )

,

T

cl cl

T

A X X A

A X B M C A X B M C

 

     



   

                                (36) 

with M K X  . By replacing (34) in (34) and then 

applying Schur complement on the resulting inequality, the 

following inequality is obtained:  

 
1 1

1

2

1

1

0 0
0.

0 0

0 0

T

T

T

A X B XC

X A P

B I

C X I



 





 

 
 
 

 
 

 
 

                                       (37) 

with  2 2 1

T

A X B M C A X B M C P          . 

Finally, by employing Lemma 1, it is clear that (24)-(25) is a 

sufficient condition for satisfying (37).  

In the sequel, we use Lemma 2 to find equivalent conditions to 

satisfy CX XC . Using Lemma 1 and the SVD form of the 

matrix C, the condition CX XC holds if X is partitioned as 

in  (19). Therefore, to recover the controller gains from the 

solutions of the LMIs (24)-(25), one has:  
1.j jK M X 

                                                                      (38) 

Moreover, since X  is not directly appeared in the LMIs, we 

should offer a method to find it. One can use the conditions 

CX XC associated by the special form of X in (27) to find 

the matrix X : 

11

22

0
[ 0] [ 0] .

0

T T T
X

U S V V V XU S V
X

 
 

 

                            (39) 

It is known that 
TV V I  by using the properties of the 

SVD. Then, (39) can be written as: 
1 1 1

11 11( ) .X USX US USX S U                                               (40) 

Finally, the matrix X  is obtained by:  
1 1 1

11 11( ) .X USX US USX S U                                               (41)                    

This completes the proof.  

Remark 1. The main superiority of the proposed method in 

Theorem 1 in contrast with the other existing results in the 

literature for the static output feedback controller design of TS 

fuzzy systems with time-delay [27-29] is that the equality 

constraint CX XC  has not been directly used in the design 

LMIs which improves the feasibility of the design conditions. 

It is well-known that equality constraint is hard to be satisfied 

and complicates the solving procedure of the LMIs. This 

disadvantage of the equality constraint is not seen in our 

method since by using Lemma 2 we avoided appearance of 

this constraint in the design LMIs. 

Remark 2. In the case that the reference signal of the 

glucose state variable in the glucose/insulin model (9) is 

constant; i.e. ( )ref refG t G , an alternative method for 

designing the static output feedback controller without 

considering the H∞-performance criterion could be considered. 

In fact, in this case the disturbance signal 
1( )w t  equals to zero 

since ( ) 0refG t   and the special values of the parameters 

max
, , ,

xgi ref ref iG
K G I T and 

G
V  cause that 

gh

xgi ref ref

G

T
K G I

V
  [24]. 

Moreover, one can re-define the control signal ( )u t  as 

( ) ( ) ( )
xi ref ref

u t K I t I t  , where ( )u t  is the new control 

signal to be designed. Thus, by this choice the term 

2
( ) ( ) ( )

xi ref ref
w t K I t I t   is vanished. As a result, both 

disturbance signals 
1
( )w t  and 

2
( )w t  equal to zero. In this 

special case, one can use the following corollary to design the 

static output feedback controller. 

Corollary 1. Suppose that the TS fuzzy system output matrix 

C  is represented by its SVD form as [ 0] TC U S V . Then, 

the closed-loop TS system with time-delay (23) with 

1( ) 0w t  , 
2 ( ) 0w t   is asymptotically stable if there exist 

 
Fig. 1.  Variations of plasma glycemia, 𝑮 [mM] in terms of time [min]. 
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symmetric positive definite matrices 
11X ,

22X ,
1P  and matrices 

( 1,..., )iM i r such that the following LMIs hold: 

       0, 1,..., ,ii i r                                                             (42) 

2
0, , 1,..., , ,

1
ii ij ji i j r i j

r
     


                                   (43) 

where: 

 

11

1

1

,
ij i

Tij

i

A X

X A P





 
  
 
 

                                                         (44) 

with 11

2 2( )T

ij i i j i i jA X B M C A X B M C P      , 
2   

and X is defined as (27) and the static output feedback 

controller gains
iK  are derived by (28). 

IV. SIMULATION RESULTS 

To show the validity of the proposed controller, the system 

is simulated on the basis of the dynamic model of equations 

(1-2) and the controller described in Theorem 1. In order to 

solve LMIs, we use SeDuMi [31] in MATLAB®.  The model 

parameters used in the simulation are the ones reported in 

[24][24] in which 𝑉𝐺 , 𝜏𝑔, 𝐾𝑥𝑔𝑖 , 𝐾𝑥𝑖 , 𝑇𝑔ℎ and 𝛾 are estimated so 

as to avoid nonnegative values. The mentioned case is a 

virtual patient subjected to Type 2 Diabetes Mellitus with 

reduced pancreatic glucose sensitivity 𝑇𝑖𝐺𝑚𝑎𝑥 = 0.236 which 

effectively result in the values for 𝐺𝑏 = 10.66 and 𝐼𝑏 = 49.29 

[24]. The other parameters are listed below: 
2

5 *

0.187, 1.211 10 , 24, 0.003,

3.205, 0.25, 3.11 10 , 9.

G xi g gh

I xgi

V K T

V K G









    

    
                      (27) 

By assuming the above mentioned parameters, the solution 

of the LMIs in Corollary 1 yield the following controller gains 

are obtained: 

𝐾1 = 0.0156 𝐾2 = 0.0155 𝐾3 = 𝐾4 = 3.11 . 10−5      (28) 

Figure 1, 2, 3 shows the results of the closed-loop dynamics of 

the system and the control signal. The initial conditions for the 

simulation are: 𝐺(0) = 𝐺𝑏 , 𝐼(0) = 𝐼𝑏 . 

It should be noted that for the simulation, the original 

nonlinear model (1) is used instead of its T-S model 

representation in (10). 

 
Fig. 2. Variations of insulinemia, 𝑰, [pM] in terms of time [min]. 

 It is clear that the proposed controller asymptotically 

stabilizes the closed-loop error systems and thus the state 

variables of system asymptotically converge to the desired 

values 𝐺𝑟𝑒𝑓 = 5.0, 𝐼𝑟𝑒𝑓 = 112.69, which shows the 

effectiveness of the proposed T-S fuzzy output feedback 

controller for regulating the amount of blood glucose. 

 
Fig. 3. Variations of exogenous intra-venous insulin delivery rate, 𝒖, 

[pM/min] in terms of time [min]. 

V. CONCLUSIONS 

A new output feedback control scheme based on the TS 

fuzzy systems is introduced for the class of nonlinear 

differential equations with time-delay. We propose a new 

formulations and design conditions for T-S fuzzy dynamic 

output feedback tracking control problem in the presence of 

time-delay in the system dynamics. The proposed controller is 

utilized to adjust the amount of blood glucose by means of 

insulin injection as the control input. The dynamics behavior 

of the blood glucose/insulin metabolism is described by a 

single discrete-delay nonlinear differential equation system. 

Numerical simulations demonstrate that the proposed 

controller is effective and efficient to regulate the blood 

glucose level in the presence of time-delay in the dynamics 

model. 
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